Abstract:
This invention relates to an object observation apparatus and observation method. The object observation apparatus is characterized by including a drivable stage on which a sample is placed, an irradiation optical system which is arranged to face the sample on the stage, and emits an electron beam as a secondary beam, an electron detection device which is arranged to face the sample, causes to project, as a primary beam, at least one of a secondary electron, reflected electron, and back-scattering electron generated by the sample upon irradiation of the electron beam, and generates image information of the sample, a stage driving device which is adjacent to the stage to drive the stage, and a deflector arranged between the sample and the electron detection device to deflect the secondary beam, the electron detection device having a converter arranged on a detection surface to convert the secondary beam into light, an array image sensing unit which is adjacent to the converter, has pixels of a plurality of lines each including a plurality of pixels on the detection surface, sequentially transfers charges of pixels of each line generated upon reception of light of an optical image obtained via the converter to corresponding pixels of an adjacent line at a predetermined timing, adds, every transfer, charges generated upon reception of light after the transfer at the pixels which received the charges, and sequentially outputs charges added up to a line corresponding to an end, and a control unit connected to the array image sensing unit to output a transfer signal for sequentially transferring charges of pixels of each line to an adjacent line, and the control unit having a stage scanning mode in which the array image sensing unit is controlled in accordance with a variation in projection position of the secondary beam projected on the electron detection device that is generated by movement of the stage device, and a deflector operation mode in which the array image sensing unit is controlled in accordance with a variation in projection position of the secondary beam projected on the detection device by the deflector.
Abstract:
A scanning particle mirror microscope and a method for imaging the surface of a specimen. The scanning particle mirror microscope includes a source for generating a primary particle beam, at least one lens arrangement for focussing the primary particle beam, a scan deflection system in order to deflect the primary particle beam over the specimen, and a detector for detecting particles. Furthermore, means are provided for generating a retarding field above the specimen, wherein the retarding field is adapted in that at least a part of the primary particle beam is reflected before it reaches the specimen and at least some of the reflected particles reach the detector. The scan deflection system is disposed really or virtually in the front focal plane of the lens arrangement.
Abstract:
A field emission electron gun comprises a field emission tip as its source of electrons. A first anode is spaced downstream from the tip and when a voltage is applied between the first anode and the tip, electrons from the tip are accelerated toward the first anode. An opening in the first anode limits the angular spread of the electron beam. A second anode is spaced downstream from the first anode and when a voltage is applied between the second anode and the tip, the energy level of the electrons at the image or specimen plane is controlled. The electrostatic field between the first and the second anode brings the electron beam into focus. For protecting the field emission tip against high voltage discharges, a third electrode in the form of a shield surrounds the field emission tip and is maintained at or near the electrical potential of the tip. Within the shield is a fourth electrode which serves, when voltage is applied thereto, to draw electrons from the tip and to restore or maintain normal operating conditions for the field emission electron gun. An iongetter vacuum pump and a reactive sublimator vacuum pump are formed in the electron gun by evaporating a highly reactive element or getter material on the inner walls of the third electrode, which serves as a collector by inducing gas molecules which strike this surface to adhere thereto and to be imbedded therein. The inner walls of the third electrode react with reactive gasses present in the region of the tip and the fourth electrode. The ion getter pump operates by ionizing residual gas molecules which are then impelled by electric fields and are imbedded under the coating of sublimed getter material. The primary electron beam from the tip strikes the surface of the fourth electrode, thereby causing reflected and secondary electrons to be emitted from the surface, which electrons form an electron cloud capable of ionizing molecules within the chamber. The electron cloud is formed and the ionized gas molecules are collected by applying the appropriate potentials to the electrodes in the gun assembly. The third electrode may be cooled by a liquid nitrogen cooling system, which functions as a cryogenic vacuum pump. This cooling system can also be used to cool the tip in order to reduce the tip flicker noise resulting in greater stability of electron emission.
Abstract:
A method for crystal analysis includes identifying a crystalline region on a device where an electronic channeling pattern is needed to be determined, acquiring a whole image for each of a plurality of different positions for the crystalline region using a scanning electron microscope (SEM) as the crystalline region is moved to different positions. Relevant regions are extracted from the whole images. The images of the relevant regions are stitched together to form a composite map of a full electron channeling pattern representative of the crystalline region wherein the electronic channeling pattern is provided due to an increase in effective angular range between a SEM beam and a surface of the crystal region.
Abstract:
Disclosed is a composite beam apparatus capable of suppressing the influence of charge build-up, or electric field or magnetic field leakage from an electron beam column when subjecting a sample to cross-section processing with a focused ion beam and then performing finishing processing with another beam. The Composite beam apparatus includes: an electron beam column irradiating an electron beam onto a sample; a focused ion beam column irradiating a focused ion beam onto the sample to form a cross section; a neutral particle beam column having an acceleration voltage set lower than that of the focused ion beam column, and irradiating a neutral particle beam onto the sample to perform finish processing of the cross section, wherein the electron beam column, the focused ion beam column, and the neutral particle beam column are arranged such that the beams of the columns cross each other at an irradiation point.
Abstract:
An apparatus for preparing a sample for microscopy is provided that has a milling device that removes material from a sample in order to thin the sample. An electron beam that is directed onto the sample is present along with a detector that detects when the electron beam has reached a preselected threshold transmitted through or immediately adjacent the sample. Once the detector detects the electron beam has reached this threshold, the milling device terminates the milling process.
Abstract:
A cross-section processing-and-observation method includes: a cross-section exposure step of irradiating a sample with a focused ion beam to expose a cross-section of the sample; a cross-sectional image acquisition step of irradiating the cross-section with an electron beam to acquire a cross-sectional image of the cross-section; and a step of repeatedly performing the cross-section exposure step and the cross-sectional image acquisition step along a predetermined direction of the sample at a setting interval to acquire a plurality of cross-sectional images of the sample. In the cross-sectional image acquisition step, a cross-sectional image is acquired under different condition settings for a plurality of regions of the cross-section.
Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to inspect and perform lithography on a substrate using a combination of vectoring to move a beam to features to be imaged, and raster scanning to obtain an image of the feature(s). The inventors have discovered that it is highly advantageous to use an extra step, a fast raster scan to image the substrate at a lower resolution, to determine which features receive priority for inspection; this extra step can reduce total inspection time, enhance inspection results, and improve beam alignment and manufacturing yield. Using multiple beam-producing columns, with multiple control computers local to the columns, provides various synergies. Preferably, miniature, non-magnetic, electrostatically-driven columns are used.
Abstract:
An apparatus for preparing a sample for microscopy is provided that has a milling device that removes material from a sample in order to thin the sample. An electron beam that is directed onto the sample is present along with a detector that detects when the electron beam has reached a preselected threshold transmitted through or immediately adjacent the sample. Once the detector detects the electron beam has reached this threshold, the milling device terminates the milling process.
Abstract:
A charged particle radiation apparatus includes a control device that switches between a first charged particle beam and a second charged particle beam, the first charged particle beam being scanned to acquire an image and a waveform signal, the second charged particle beam being scanned over a sample before the scan of the first charged particle beam and used to charge the sample more than the first charged particle beam; wherein the control device is configured to acquire at least one of signal waveform data and image data about a pattern formed on the sample in accordance with a scan performed on the sample by the second charged particle beam, and to stop, when the acquired data has proved to be indicative of a predetermined state, the scan of the second charged particle beam.