Abstract:
An array of composite polymer-metal contact members adapted to form solder free electrical connections with a first circuit member. The contact members include a resilient polymeric base layer and an array of metalized traces printed on selected portions of the base layer. Conductive plating is applied to the metalized layer to create an array of conductive paths. The resilient polymeric base layer, the metalized layer, and the conductive plating have an aggregate spring constant sufficient to maintain distal portions of the contact members in a cantilevered configuration and to form a stable electrical connection between the distal portions and the first circuit member solely by compressive engagement.
Abstract:
The invention provides transient printed circuit board devices, including active and passive devices that electrically and/or physically transform upon application of at least one internal and/or external stimulus.
Abstract:
An electrode arrangement which is based on elastomer and has elasticity and flexibility may include: an elastomer substrate; first and second pads arranged over the substrate; and a conductive wire connecting the first and second pads. One or more regions of the conductive wire may be bent in a vertical or horizontal direction with respect to the substrate.
Abstract:
A heat dissipation structure including: (A) a printed circuit board; (B) a heat-generating element; (C) an electromagnetic shielding case; (D) a rubbery, thermally conductive resin layer with a tensile elastic modulus of 50 MPa or lower and a thermal conductivity of 0.5 W/mK or higher; and (E) a thermally non-conductive layer with a thermal conductivity of lower than 0.5 W/mK, the heat-generating element (B) being placed on the printed circuit board (A), the heat-generating element (B) and the thermally conductive resin layer (D) being in contact with each other, the thermally non-conductive layer (E) being provided between the heat-generating element (B) and the electromagnetic shielding case (C).
Abstract:
A wiring substrate includes, an insulating substrate in which a plurality of penetration conductors are provided, the penetration conductors penetrating in a thickness direction of the insulating substrate, a first connection pad arranged on one face of the insulating substrate, a second connection pad arranged to correspond to the first connection pad on other face of the insulating substrate, a first metal layer arranged to surround the first connection pad, a second metal layer arranged to correspond to the first metal layer, the second metal layer surrounding the second connection pad, the plurality of penetration conductors connecting the first connection pad and the second connection pad, and connecting the first metal layer and the second metal layer, and an elastic body formed in a part of the insulating substrate between the first and second connection pads, and the first and second metal layers.
Abstract:
Provided is a method of fabricating an electronic circuit. The method includes preparing a substrate, forming a polymer film on the substrate, patterning the polymer film to form a polymer pattern, and forming an electronic device on the polymer pattern.
Abstract:
A connection carrier for at least one semiconductor chip is disclosed. The connection carrier has a carrier body having a main surface. A first connection area and a second connection area at a distance from the first connection area are formed on the main surface. The connection carrier has a mechanical decoupling device which is intended to reduce transmission of mechanical forces from the carrier body to at least one region of the first connection area. A semiconductor component having such a connection carrier is also stated.
Abstract:
Provided are methods of forming thermally conductive flexible bonds for use in electronic boards of unmanned spacecrafts and other types of aircraft. Also provided are methods of preparing adhesive materials to form these bonds including methods of preparing treated filler particles. In some aspects, an adhesive material includes filler particles having organofunctional groups, such as boron nitride particles treated in silane. These particles may be combined with a urethane modified epoxy to form the adhesive material. The weight ratio of the particles in the adhesive material may be about 40-60%. The adhesive material may be thermally cured using a temperature of less than 110° C. to prevent damage to bonded electronic components. The cured adhesive may have a thermal conductivity of at least about 2 W/m K measured in vacuum and may have a glass transition temperature if less than −40° C.
Abstract:
A substrate comprises: a first insulating layer; a second insulating layer having an elastic modulus that is different from an elastic modulus of the first insulating layer; and a core layer that is sandwiched by the first insulating layer and the second insulating layer, and is more rigid than the first insulating layer and the second insulating layer.
Abstract:
A resin composition which is low in a roughness of an insulating layer surface and capable of forming thereon a plated conductor layer having a sufficient peel strength in a wet roughing step and which is excellent in dielectric characteristics and a coefficient of thermal expansion, is disclosed. The resin composition contains a cyanate ester resin and a specified epoxy resin.