Abstract:
A multi-layer electronic circuit board design 10 having selectively formed apertures or cavities 26 which have improved solder-wetting characteristics.
Abstract:
In conventional ETM circuit structures a pin connector in which the pin is etched from the ETM substrate and the mating cavity is etched from the ETM substrate to be mated. The connector utilizes the subtractive ETM structure processing to define any one of several pin-cavity configurations. The pin serves as an anchor with the metallurgical bonds with solder in the cavity that forms on the copper surfaces of the ETM circuit structure to give good mechanical strength to the connection. In particular four different configurations of interconnections are shown and described.
Abstract:
A structure of a multilayer printed wiring board having a wiring lead-out port can be easily formed. A large number of products can be easily manufactured with good size reproducibility. A method of manufacturing the same is also are disclosed. The multilayer printed wiring board is characterized by having a signal circuit conductor perfectly covered by an earth circuit in its inside and a wiring lead-out port. A signal circuit conductor having a branch pattern is preferable. The multilayer printed wiring board is manufactured by selectively etching the copper of a cladding sheet manufactured by bonding a copper foil to a nickel foil with 0.1-3% reduction and forming a signal circuit conductor perfectly covered by an earth circuit and the wiring lead-out port.
Abstract:
The present invention provides a process for the fabrication of a wiring board, which comprises the following steps: (a) forming a first wiring pattern on a first side of a self-supporting carrier metal foil so as to obtain a self-supporting wiring sheet comprising the carrier metal foil and the first wiring pattern; (b) superposing and pressing the first side of said self-supporting wiring sheet on and against an insulating substrate so that the first wiring pattern is_embedded in the insulating substrate and constitutes a surface with the insulating substrate; and (c) etching off desired portions of said carrier metal foil to form a second wiring pattern made of said carrier metal foil remaining on the surface constituted by the insulating substrate and the first wiring pattern. The present invention also provides the wiring board for electrical tests so fabricated.
Abstract:
A multi-layer electronic circuit board design 10 having a core member 12, a pair of dielectric layers 14, 16 disposed thereon, and a first circuit portion 20 which is coupled to the dielectric layer 14 and core member 12 using a layer of adhesive material 18. Circuit board design 10 further having selectively formed “blind” apertures, vias or cavities 22 formed through the first circuit portion 20, dielectric layer 14, and adhesive layer 18, thereby exposing core member 12.
Abstract:
A method 10 for making a multi-layer circuit board 70 having at least one electrically conductive interconnection portion or nullvianull 72 which extends within the board 70 and at least one air-bridge 74. The method 10 includes the steps of forming protuberances 13 upon a core member 12, attaching pre-circuit assemblies 32, 34 to the core member 12, thereby forming the circuit board 70 while concomitantly and selectively extending at least one of the protuberances 13 within the formed circuit board 70.
Abstract:
A method 10, 110 for making multi-layer circuit boards having metallized apertures 38, 40, 130, 132 which may be selectively and electrically grounded and having at least one formed air-bridge 92, 178.
Abstract:
A multilayer circuit board having air bridge crossover structures and an additive method for producing the same, wherein the circuit includes specially designed metallic fortifying layers to mechanically and/or electrically fortify the circuit.
Abstract:
A three dimensional multi-layer circuit structure is formed by partially etching a foil having a coating. A pre-circuit is formed by providing a metal foil, applying a photodefinable photoresist to each side of the metal foil, selectively exposing and developing the photoresist leaving exposed areas and unexposed areas and, plating the unexposed areas with a second metal. The pre-circuit is placed in an etching solution and removed after the etching solution partially etches the metal foil to undercut the second metal. The partially etched pre-circuit is then bent into a predetermined shape. The partially etched pre-circuit is then inserted into a mold cavity so that at least one surface of the circuit structure is adjacent to the mold. The mold is filled with a polymer resin so that the polymer resin encapsulates at least a portion of the partially etched pre-circuit and substantially fills the undercut. The molded circuit structure is then removed from the mold and the metallic foil is further etched to complete the forming of the circuit.