Abstract:
A light-emitting assembly and a method for manufacturing the same are provided. The light-emitting assembly includes a circuit board with a light-emitting element and a plurality of optical microstructures disposed thereon. The optical microstructures adjacent to the light-emitting element absorb or guide a portion of light emitted from the light-emitting element.
Abstract:
A semiconductor device housing package includes a base body having, on its upper surface, a mounting region of a semiconductor device; a frame body having a frame-like portion disposed on the upper surface of the base body, surrounding the mounting region, and an opening penetrating through from an inner side of the frame-like portion to an outer side thereof; a flat plate-like insulating member disposed in the opening, extending from an interior of the frame body to an exterior thereof; wiring conductors disposed on an upper surface of the insulating member, extending from the interior of the frame body to the exterior thereof; and a metallic film disposed on a part of the upper surface of the insulating member, the metallic film lying outside the frame body surrounding the wiring conductors.
Abstract:
An LED module, including a carrier having high reflectivity, wherein a metal layer, preferably a silver layer or a layer of high-purity aluminum, is applied to the carrier. Also disclosed is an LED module, including a carrier having high reflectivity, wherein a metal layer is applied to the carrier, at least one LED chip, and a dam, wherein the metal layer partially covers the surface of the carrier lying under the dam.
Abstract:
A circuit board that is to be mounted in a connector socket includes a plurality of electrical connectors located along a side edge of the circuit board. Retention bosses are formed on first and second opposite sides of the circuit board, each of the retention bosses protruding from a surface of the circuit board and extending parallel to and adjacent to the first edge of the circuit board. When the first edge of the circuit board is inserted into a slot of a connector socket, contact surfaces of the first and second retention bosses contact top surfaces of the connector socket to help immobilize the circuit board with respect to the connector socket. Adhesive layers on the contact surfaces of the first and second retention bosses may adhere to the top surfaces of the connector socket to help hold the circuit board immobile with respect to the connector socket.
Abstract:
A patterned conductive structure includes a transparent substrate having a substrate surface. A conductive polymer layer is formed on the substrate surface. The conductive polymer layer has electrically conductive areas and deactivated areas that are less electrically conductive than the conductive areas. The conductive areas and the deactivated areas form a conductive pattern in the polymer layer. One or more transparent dielectric patches that are less electrically conductive than the deactivated areas are formed over at least a portion of one or more deactivated areas and one or more conductive wires are formed over at least one of the dielectric patches.
Abstract:
A semiconductor device has a semiconductor die with die bump pads and substrate with trace lines having integrated bump pads. A solder mask patch is formed interstitially between the die bump pads or integrated bump pads. The solder mask patch contains non-wettable material. Conductive bump material is deposited over the integrated bump pads or die bump pads. The semiconductor die is mounted over the substrate so that the conductive bump material is disposed between the die bump pads and integrated bump pads. The bump material is reflowed without a solder mask around the integrated bump pads to form an interconnect between the semiconductor die and substrate. The solder mask patch confines the conductive bump material within a footprint of the die bump pads or integrated bump pads during reflow. The interconnect can have a non-fusible base and fusible cap.
Abstract:
A semiconductor device has a semiconductor die having a plurality of die bump pad and substrate having a plurality of conductive trace with an interconnect site. A solder mask patch is formed interstitially between the die bump pads or interconnect sites. A conductive bump material is deposited on the interconnect sites or die bump pads. The semiconductor die is mounted to the substrate so that the conductive bump material is disposed between the die bump pads and interconnect sites. The conductive bump material is reflowed without a solder mask around the die bump pad or interconnect site to form an interconnect structure between the semiconductor die and substrate. The solder mask patch confines the conductive bump material within the die bump pad or interconnect site. The interconnect structure can include a fusible portion and non-fusible portion. An encapsulant is deposited between the semiconductor die and substrate.
Abstract:
A semiconductor device has a semiconductor die with die bump pads and substrate with trace lines having integrated bump pads. A solder mask patch is formed interstitially between the die bump pads or integrated bump pads. The solder mask patch contains non-wettable material. Conductive bump material is deposited over the integrated bump pads or die bump pads. The semiconductor die is mounted over the substrate so that the conductive bump material is disposed between the die bump pads and integrated bump pads. The bump material is reflowed without a solder mask around the integrated bump pads to form an interconnect between the semiconductor die and substrate. The solder mask patch confines the conductive bump material within a footprint of the die bump pads or integrated bump pads during reflow. The interconnect can have a non-fusible base and fusible cap.
Abstract:
A core layer has on its front surface a pair of connecting electrodes forming a wiring pattern and a resist formed between the pair of electrodes; an electronic component having a pair of connecting terminals; a solder part joining between electrodes and connecting terminals; and a sealing resin part filling a gap between the bottom surface of the electronic component and the front surface of the core layer and covering the resist and the solder part, to prevent a defect of a component built-in printed circuit substrate.
Abstract:
A semiconductor device has a semiconductor die with die bump pads and substrate with trace lines having integrated bump pads. A solder mask patch is formed interstitially between the die bump pads or integrated bump pads. The solder mask patch contains non-wettable material. Conductive bump material is deposited over the integrated bump pads or die bump pads. The semiconductor die is mounted over the substrate so that the conductive bump material is disposed between the die bump pads and integrated bump pads. The bump material is reflowed without a solder mask around the integrated bump pads to form an interconnect between the semiconductor die and substrate. The solder mask patch confines the conductive bump material within a footprint of the die bump pads or integrated bump pads during reflow. The interconnect can have a non-fusible base and fusible cap.