Abstract:
Automatic clinging leads of an electric device are provided for an unassisted mounting on thru-holes of a printed circuit board. Each of the leads of the device has three continuous right-angled sections including a longitudinal proximal end section extending from the terminal region of the electric element, a latitudinal distal end section extending at right angle with respect to the proximal end section, and a bent midsection for connecting the proximal and distal end sections at the diametrically opposite right angle to the angle between the proximal and distal end sections to provide a generally laterally extending lead with three alternating bends between the three sections. The device leads can be inserted into the thru-holes of the circuit board through a 90-degree swivel motion that causes a secure flush cling of the leads and in turn a low profile mounting of the device onto the circuit board around thru-holes.
Abstract:
Integrated circuit packages include an integrated circuit mounting substrate having a hole that defines an inner wall of the integrated circuit mounting substrate. An integrated circuit is provided in the hole. A sinuous lead frame extends from the integrated circuit and is connected to the inner wall. The sinuous lead frame extends back and forth along a given direction, and may include a U- and/or V-shape, and round and/or jagged portions. Related packaging methods are also disclosed.
Abstract:
A stacked semiconductor package includes a first semiconductor package, a second semiconductor package and a conductive connection member. The first semiconductor package includes a first semiconductor chip, a first lead frame having first outer leads that are electrically connected to the first semiconductor chip, and a first molding member formed on the first semiconductor chip and the first lead frame to expose the first outer leads. The second semiconductor package includes a second semiconductor chip, a second lead frame formed on the first molding member and having second outer leads that may be electrically connected to the second semiconductor chip, and a second molding member formed on the second semiconductor chip and the second lead frame to expose the second outer leads. The conductive connection member may electrically connect the first outer leads and the second outer leads to each other. Further, the conductive connection member may have a crack-blocking groove.
Abstract:
A circuit board mounted connector is equipped with an insulative housing, which holds a plurality of rows of contacts and is mounted on a circuit board. Each contact has a contact portion, for contacting another connector; and a leg portion, which is connected to the circuit board. Each leg portion has an extending portion that extends from a rear wall of the insulative housing; a flexible portion, which is formed continuously with the extending portions; and a linear portion that extends in a direction substantially perpendicular to the circuit board from the flexible portion and is connected to an aperture of the circuit board. Of the plurality of rows of contacts, at least the row closest to the circuit board has extending portions that extend away from the circuit board, up to the flexible portions. The linear portions of each of the leg portions are partially tin plated.
Abstract:
A shield plate arranged between a connector and a circuit board for covering and shielding parts of metal pins sticking out from the circuit board when a connector provided with a board mounting surface having a plurality of metal pins and a connector connection surface is mounted at an end of the circuit board, provided with an connector-engagement part, a shield part of the metal pins, a mounting part having press-fit pins for insertion, and support parts of the press-fit pins and flexible parts at a part between the shield part and the mounting part, the press-fit pins becoming vertical to the circuit board in the state with the engagement part engaged with the connector and the free end parts of the press-fit pins provisionally inserted into the engagement holes, thereby enabling the press-fit pins to be press-fit into the engagement holes all at once by a pushing action of the support parts.
Abstract:
An optical subassembly is used in connection with an optoelectronic package with a shaped lead configuration. The lead configuration enables the shaped leads to electrically connect with through-hole vias defined in a printed circuit board while minimizing space requirements and providing stress relief for the leads. In one embodiment, an optical subassembly is disclosed, comprising a header containing optoelectronic components, and a plurality of conductive leads that are in operable communication with the optoelectronic components. Each lead includes a straight portion extending from a surface of the header, an end portion oriented so as to be received by a through-hole via defined in a printed circuit board, and a shaped portion interposed between the straight and end portions and having at least one bend defined in a first plane. The optical subassembly further includes a clip assembly having a plurality of cavities that each receive a corresponding one of the leads.
Abstract:
A circuit board mounted connector is equipped with an insulative housing, which holds a plurality of rows of contacts and is mounted on a circuit board. Each contact has a contact portion, for contacting another connector, and a leg portion, which is connected to the circuit board. Each leg portion has an extending portion that extends from a rear wall of the insulative housing; a flexible portion, which is formed continuously with the extending portions; and a linear portion that extends in a direction substantially perpendicular to the circuit board from the flexible portion and is connected to an aperture of the circuit board. Of the plurality of rows of contacts, at least the row closest to the circuit board has extending portions that extend away from the circuit board, up to the flexible portions. The linear portions of each of the leg portions are partially tin plated.
Abstract:
An IC contact (1) for use in an LGA socket includes a retention portion (10), a contact portion (11) extending from the retention portion, a solder terminal portion (12) extending opposite to the contact portion, and a connecting section (13) connected between the retention portion and the solder terminal portion. The connecting section is bent from a sheet of material and configured to have a multi-curved shape. Such a multi-curved connecting section does provide a high contact force for deflection, and is capable of attaining high compliance, thereby having no portion cracked during a reflow solder process.
Abstract:
Contact structures exhibiting resilience or compliance for a variety of electronic components are formed by bonding a free end of a wire to a substrate, configuring the wire into a wire stem having a springable shape, severing the wire stem, and overcoating the wire stem with at least one layer of a material chosen primarily for its structural (resiliency, compliance) characteristics. A variety of techniques for configuring, severing, and overcoating the wire stem are disclosed. In an exemplary embodiment, a free end of a wire stem is bonded to a contact area on a substrate, the wire stem is configured to have a springable shape, the wire stem is severed to be free-standing by an electrical discharge, and the free-standing wire stem is overcoated by plating. A variety of materials for the wire stem (which serves as a falsework) and for the overcoat (which serves as a superstructure over the falsework) are disclosed. Various techniques are described for mounting the contact structures to a variety of electronic components (e.g., semiconductor wafers and dies, semiconductor packages, interposers, interconnect substrates, etc.), and various process sequences are described. The resilient contact structures described herein are ideal for making a “temporary” (probe) connections to an electronic component such as a semiconductor die, for burn-in and functional testing. The self-same resilient contact structures can be used for subsequent permanent mounting of the electronic component, such as by soldering to a printed circuit board (PCB). An irregular topography can be created on or imparted to the tip of the contact structure to enhance its ability to interconnect resiliently with another electronic component. Among the numerous advantages of the present invention is the great facility with which the tips of a plurality of contact structures can be made to be coplanar with one another. Other techniques and embodiments, such as wherein the falsework wirestem protrudes beyond an end of the superstructure, or is melted down, and wherein multiple free-standing resilient contact structures can be fabricated from loops, are described.
Abstract:
An interconnection contact structure assembly including an electronic component having a surface and a conductive contact carried by the electronic component and accessible at the surface. The contact structure includes an internal flexible elongate member having first and second ends and with the first end forming a first intimate bond to the surface of said conductive contact terminal without the use of a separate bonding material. An electrically conductive shell is provided and is formed of at least one layer of a conductive material enveloping the elongate member and forming a second intimate bond with at least a portion of the conductive contact terminal immediately adjacent the first intimate bond.