Abstract:
A method for fabricating an electronic device includes the steps of: preparing a cavity defining sacrificial layer, at least the upper surface of which is covered with an etch stop layer; forming at least one first opening in the etch stop layer, thereby partially exposing the surface of the cavity defining sacrificial layer; etching the cavity defining sacrificial layer through the first opening, thereby defining a provisional cavity under the etch stop layer and a supporting portion that supports the etch stop layer thereon; and etching away a portion of the etch stop layer, thereby defining at least one second opening that reaches the provisional cavity through the etch stop layer and expanding the provisional cavity into a final cavity.
Abstract:
A method for fabricating an electronic device includes the steps of: preparing a cavity defining sacrificial layer, at least the upper surface of which is covered with an etch stop layer; forming at least one first opening in the etch stop layer, thereby partially exposing the surface of the cavity defining sacrificial layer; etching the cavity defining sacrificial layer through the first opening, thereby defining a provisional cavity under the etch stop layer and a supporting portion that supports the etch stop layer thereon; and etching away a portion of the etch stop layer, thereby defining at least one second opening that reaches the provisional cavity through the etch stop layer and expanding the provisional cavity into a final cavity.
Abstract:
Some embodiments include methods of manufacturing a plurality of MEMS devices, each device including a first material and a second material with different CTE. The method includes providing a carrier with substantially equal CTE as the first material, the carrier comprising a plurality of cavities. The method also includes positioning a plurality of components in respective cavities of the carrier, the components comprising the second material. In some embodiments, the method includes positioning a layer of the first material on the second material components. In some embodiments, the method includes bonding the first material layer and the second material components. The method also includes removing the carrier and singulating the first material layer to produce the plurality of MEMS devices.
Abstract:
A complementary metal oxide semiconductor (CMOS) device integrated with micro-electro-mechanical system (MEMS) components in a MEMS region is disclosed. The MEMS components, for example, are infrared (IR) thermosensors. The MEMS sensors are integrated on the CMOS device heterogeneously. For example, a CMOS wafer with CMOS devices and interconnections as well as partially processed MEMS modules is bonded with a MEMS wafer with MEMS structures, post CMOS compatibility issues are alleviated. Post integration process to complete the devices includes forming contacts for interconnecting the sensors to the CMOS components as well as encapsulating the devices with a cap wafer using wafer-level vacuum packaging.
Abstract:
Methods and apparatus for preventing solar damage, and other heat-related damage, to uncooled microbolometer pixels. In certain examples, at least some of the pixels of an uncooled microbolometer are configured with a bimetallic thermal shorting structure that protects the pixel(s) from excessive heat damage. In other examples a thermochroic membrane that becomes highly reflective at temperatures above a certain threshold is applied over the microbolometer pixels to prevent the pixels from being damaged by excessive heat.
Abstract:
A device having a microelectronic component housed in a hermetically sealed housing having a vacuum inner space, and including a getter that substantially traps only hydrogen, is inert to oxygen and/or to nitrogen, and is housed in said inner space. Each of the constituent parts of the device being likely to degas into the inner space is a mineral material.
Abstract:
A microelectromechanical systems (MEMS) package includes a substrate extending between a first pair of outer edges to define a length and a second pair of outer edges to define a width. A seal ring assembly is disposed on the substrate and includes at least one seal ring creating a first boundary point adjacent to at least one MEMS device and a second boundary point adjacent at least one of the outer edges. The package further includes a window lid on the seal ring assembly to define a seal gap containing the at least one MEMS device. The seal ring assembly anchors the window lid to the substrate at the second boundary point such that deflection of the window lid into the seal gap is reduced.
Abstract:
A wearable device is provided having multiple sensors configured to detect and measure different parameters of interest. The wearable device includes at least one monolithic integrated multi-sensor (MIMS) device. The MIMS device comprises at least two sensors of different types formed on a common semiconductor substrate. For example, the MIMS device can comprise an indirect sensor and a direct sensor. The wearable device couples a first parameter to be measured directly to the direct sensor. Conversely, the wearable device can couple a second parameter to be measured to the indirect sensor indirectly. Other sensors can be added to the wearable device by stacking a sensor to the MIMS device or to another substrate coupled to the MIMS device.
Abstract:
A microelectromechanical systems (MEMS) package includes a substrate extending between a first pair of outer edges to define a length and a second pair of outer edges to define a width. A seal ring assembly is disposed on the substrate and includes at least one seal ring creating a first boundary point adjacent to at least one MEMS device and a second boundary point adjacent at least one of the outer edges. The package further includes a window lid on the seal ring assembly to define a seal gap containing the at least one MEMS device. The seal ring assembly anchors the window lid to the substrate at the second boundary point such that deflection of the window lid into the seal gap is reduced.
Abstract:
A method of manufacturing a device having a microelectronic component housed in a hermetically sealed vacuum housing, including forming a getter in said housing, pumping out and heating the device to degas elements housed in said housing, after said pumping, hermetically sealing the housing in fluxless fashion.Further, each material forming the device likely to degas into the inner space is a mineral material, the getter is capable of substantially trapping hydrogen only and is inert to oxygen and/or to nitrogen and the heating and the sealing are performed at a temperature lower than 300° C.