Abstract:
An optical analysis system and process are disclosed. The optical analysis system includes one or more optical filter mechanisms disposed to receive light from a light source and a detector mechanism configured for operative communication with the one or more optical filter mechanisms, the operative communication permitting measurement of properties of filtered light, filtered by the one or more optical filter mechanisms followed by optical filtering by the mosaic optical filter mechanism from the light received. The one or more optical filter mechanisms are configured so that the magnitude of the properties measured by the detector mechanism is proportional to information carried by the filtered light. The process uses the optical analysis system.
Abstract:
Provided is an imaging device (1) having: a front optical system (10) that transmits light from an object; a spectral filter array (20) that transmits light from the front optical system (10) via a plurality of spectral filters; a small lens array (30) that transmits the light from the plurality of spectral filters via a plurality of small lenses respectively, and forms a plurality of object images; a picture element (50) that captures the plurality of object images respectively; and an image processor (60) that determines two-dimensional spectral information on the object images based on image signals output from the picture element (50). The front optical system (10) is configured to transmit the light from the focused object to collimate the light into a parallel luminous flux.
Abstract:
A spectroscopic sensor 1 comprises an interference filter unit 20, having a cavity layer 21 and mirror layers 22, 23 opposing each other through the layer 21, for selectively transmitting therethrough light in a predetermined wavelength range according to an incident position thereof; a light-transmitting substrate 3, arranged on the layer 22 side, for transmitting therethrough light incident on the unit 20; and a light-detecting substrate 4, arranged on the layer 23 side, for detecting the light transmitted through the unit 20. The layer 21 has a filter region 24 held between the layers 22, 23; an annular surrounding region 25 surrounding the region 24 with a predetermined distance therefrom; and an annular connecting region 26 connecting an end part 24e on the substrate 4 side of the region 24 and an end part 25e on the substrate 4 side of the region 25 to each other.
Abstract:
Disclosed is a multi-channel light measurement system adapted to illuminate and measure a test sample in a vessel. The multi-channel light measurement system has at least one photodetector per channel and a variable integrate and hold circuit coupled to each photodetector, the variable integrate and hold circuit allows adjustment of a sampling factor selected from a group of an integration time, a value of capacitance, an area of a discrete photodetector array, or any combination thereof. The system may readily equilibrate reference intensity output for multiple channels. Methods and apparatus are disclosed, as are other aspects.
Abstract:
Disclosed is an image capturing device having an irradiation unit, an image capturing unit, and a color representation setting unit. The irradiation unit irradiates a subject with infrared rays having different wavelength intensity distributions, the image capturing unit captures images of the subject by the respective infrared rays having different wavelength distributions which are reflected by the subject, and forms image information indicating the respective images, and the color representation setting unit sets color representation information for representing the respective images, which are indicated by the formed image information, by different plain colors. Also disclosed is an image capturing method for separating infrared rays from a subject into infrared rays having different wavelength intensity distributions, capturing images of the subject by the respective infrared rays having different wavelength intensity distributions, forming image information indicating the respective images, and representing the respective images, which are indicated by the formed image information.
Abstract:
A spectroscopic sensor 1 comprises an interference filter unit 20, having a cavity layer 21 and first and second mirror layers 22, 23 opposing each other through the cavity layer 21, for selectively transmitting therethrough light in a predetermined wavelength range according to an incident position thereof; a light-transmitting substrate 3, arranged on the first mirror layer 22 side, for transmitting therethrough light incident on the interference filter unit 20; a light-detecting substrate 4, arranged on the second mirror layer 23 side, for detecting the light transmitted through the interference filter unit 20; and a first coupling layer 11 arranged between the interference filter unit 20 and the light-transmitting substrate 3. The cavity layer 21 and the first coupling layer 11 are silicon oxide films.
Abstract:
A Fourier transform infrared spectrometer includes a beam splitter (22), end mirrors (21, 23), one of which may be scanned, and detectors (32) detecting the interfered light at the two outputs of a beam combiner (22), which may be the same optical element as the beam splitter (22). Time records of detector samples may be transformed by Fourier transform to obtain the corresponding spectra. The detectors (32) may be sampled alternately in time and the samples subsequently interleaved to provide an increased effective sampling rate. The detectors (32) may be masked by color filter mosaics so that each pixel of each detector is sensitive only to one color of light, and the spectra obtained from pixels detecting different colors may be concatenated.
Abstract:
A system and method are provided for determining tissue hydration. The method includes transmitting electromagnetic radiation at tissue and detecting the absorption spectrum of the tissue using a spectrum analyzer located in a sensor. Further, the method includes providing a signal correlative to the absorption spectrum from the spectrum analyzer to a monitor and processing the signal to determine an amount of water content in the tissue.
Abstract:
An arrangement for high resolution spectroscopy includes a spatially or chronologically tunable interference filter with a wavelength selective diode array composed of a plurality of diode elements arranged side-by-side.
Abstract:
The invention discloses a Trace Microanalysis Microscope System for high throughput screening. A multimodal imaging sensor arrangement acquires color, multispectral, hyperspectral and multi-directional polarized imaging, independently and in combinations thereof. In one aspect of this disclosure, the multimodal acquisition is combined with a plurality of sample illumination modes, further expanding the dimensionality of the generated data. In another aspect of this invention, machine learning-based methods combining and comparing a-priori data with the acquired multimodal data space, provide unique identifiers for the composition of the analyzed target objects. In yet another aspect of this invention, projection mapping of the identified compositional features navigates secondary sampling for subsequent analyses.