Abstract:
A dispersive device has a beam expanding optical system which includes first and second prisms each having a pair of faces inclined relative to each other, and expands light containing a plurality of wavelength components by passing the light through each of the faces of the first and second prisms; and a dispersive element which emits the light expanded by the beam expanding optical system, at different diffraction angles by the respective wavelength components. A direction of variation of an output angle of the light emitted from the beam expanding optical system due to temperature change is configured to be a direction to suppress variation of the diffraction angles of the respective wavelength components emitted from the dispersive element due to the temperature change.
Abstract:
The transmittance of a filter periodically varies with respect to the incident light frequency. Provided that fk is the sum of Fk and vk, or the difference obtained by subtracting Fk from vk, depending on the kth light source among multiple light sources, an incidence guide causes light from the plurality of light sources to be incident on the filter such that the propagation angle of light when light from the kth light source propagates through the interior of the filter equals θk obtained by computation using fk. The incidence guide causes light to be incident on the filter, taking fk to be the sum of vk and Fk for at least one of the light sources, and taking fk to be the difference between vk and Fk for at least one other of the light sources. A detector detects the intensity of transmitted light that transmits through the filter.
Abstract:
A spectroscopic assembly is provided. The spectroscopic assembly includes a thermal isolation platform, a gas reference cell encasing a gas and attached to the thermal isolation platform, the gas reference cell having at least one optically-transparent window, and at least one heater configured to raise a temperature of the encased gas. When a beamsplitter is configured to reflect a portion of an input optical beam emitted by a laser to be incident on the at least one optically-transparent window of the gas reference cell, the reflected portion of the input optical beam is twice transmitted through the gas. When a detector is configured to receive the optical beam twice transmitted through the gas, a feedback signal is provided to the laser to stabilize the laser.
Abstract:
The invention relates to controllable Fabry-Perot interferometers which are produced with micromechanical (MEMS) technology. The prior art interferometers have a temperature drift which causes inaccuracy and requirement for complicated packaging. According to the invention the interferometer arrangement has both an electrically tuneable interferometer and a reference interferometer on the same substrate. The temperature drift is measured with the reference interferometer and this information is used for compensating the measurement with the tuneable interferometer. The measurement accuracy and stability can thus be improved and requirements for packaging are lighter.
Abstract:
A multi-wavelength optical imaging system and method. In one example, an optical imaging system includes an integrated dewar assembly housing a staring detector that includes a plurality of focal plane array sensors spatially distributed over a common focal plane and aligned relative to one another, each of the plurality of focal plane array sensors being configured for a different waveband. The optical imaging system further includes foreoptics, such as a telescope, optically coupled to the integrated dewar assembly and configured to direct and focus light from an entrance pupil of the optical imaging system into an optical beam incident on at least one of the plurality of focal plane array sensors.
Abstract:
In an embodiment, an apparatus includes a module assembly and a main assembly. The module assembly includes a module assembly housing, a first face plate and an analysis unit attached to the first face. The main assembly includes a main assembly housing, a second face plate and an engine unit rigidly attached to the second face plate. The engine unit generates a light that passes to the analysis unit via a first lens assembly and a second lens assembly. The first lens assembly is attached to the first face plate and the second lens assembly is attached to the second face plate. The module assembly when attached to the main assembly causes the first and second face plates to act as a single mechanical unit that moves independent of movement of the module assembly housing and/or the main assembly housing.
Abstract:
A spectrometer 1A is provided with an integrating sphere 20 for observing measured light emitted from a sample S of a measurement target, and a Dewar vessel 50 which retains a medium R for regulating temperature of the sample S, so as to cover the sample S and a second container portion 50b of which is located so as to face the interior of the integrating sphere 20. The sample S can be easily regulated at a desired temperature with the use of the Dewar vessel 50 retaining the medium R so as to cover the sample S. As the second container portion 50b is located so as to face the interior of the integrating sphere 20, the temperature of the sample S is regulated by the medium R, while inhibiting an external ambience around the integrating sphere from affecting the sample S. Therefore, the sample S can be efficiently regulated at a desired temperature.
Abstract:
In a spectroscopy module 1, a light passing hole 50 through which a light L1 advancing to a spectroscopic portion 4 passes is formed in a light detecting element 5. Therefore, it is possible to prevent the relative positional relationship between the light passing hole 50 and a light detecting portion 5a of the light detecting element 5 from deviating. Moreover, the light detecting element 5 is bonded to a front plane 2a of a substrate 2 with an optical resin adhesive 63. Thus, it is possible to reduce a stress generated onto the light detecting element 5 due to a thermal expansion difference between the light detecting element 5 and the substrate 2. Additionally, on the light detecting element 5, a first convex portion 101 is formed so as to be located at least between the light detecting portion 5a and the light passing hole 50 when viewed from a direction substantially perpendicular to the front plane 2a. Thus, when the light detecting element 5 is attached to the substrate 2 via the optical resin adhesive 63, the optical resin adhesive 63 is dammed at the first convex portion 101. Thus, the optical resin adhesive 63 is prevented from penetrating into the light passing hole 50.