MICROSCOPE FOR MOLECULAR SPECTROSCOPIC ANALYSIS

    公开(公告)号:US20180157019A1

    公开(公告)日:2018-06-07

    申请号:US15572111

    申请日:2016-05-06

    Abstract: The invention relates to a microscope for the molecular spectroscopic analysis of a sample (2), having a beam path having at least one quantum cascade laser (QCL) (3) which emits an infrared (IR) radiation, a phase modulator (5) which is arranged between the QCL (3) and the sample (2), at least one optical element (6) which is arranged between the phase modulator (5) and the sample (2) and a sensor (4) which detects an IR radiation which is transmitted and/or reflected by the sample (2). The invention relates further to a method for the molecular spectroscopic analysis of a sample (2) comprising the steps of irradiating the sample (2) with an infrared (IR) radiation by means of a quantum cascade laser (QCL) (3), wherein the IR radiation is directed onto the sample (2) via a phase modulator (5) and at least one optical element (6), and detecting the IR radiation which is reflected and/or transmitted by the sample (2).

    Optoelectronic arrangement
    44.
    发明授权

    公开(公告)号:US09983057B2

    公开(公告)日:2018-05-29

    申请号:US15568913

    申请日:2016-04-29

    Abstract: An optoelectronic arrangement includes an optoelectronic semiconductor chip, a wavelength-converting element and a detector component, wherein the optoelectronic arrangement is configured to emit light with a first peak wavelength and to emit light with a second peak wavelength, the first peak wavelength is in the visible spectral range and the second peak wavelength is in the non-visible spectral range or the first peak wavelength is in the non-visible spectral range and the second peak wavelength is in the visible spectral range, and the optoelectronic arrangement emits the light whose peak wavelength is in the non-visible spectral range into a target area, and the detector component is configured to detect light backscattered from the target area and the peak wavelength of which is in the non-visible spectral range.

    MEASUREMENT OF HYDROCARBON FUEL GAS COMPOSITION AND PROPERTIES FROM TUNABLE DIODE LASER ABSORPTION SPECTROMETRY

    公开(公告)号:US20180095031A1

    公开(公告)日:2018-04-05

    申请号:US15283965

    申请日:2016-10-03

    Applicant: ABB Schweiz AG

    Abstract: A tunable diode laser absorption spectrometer and a method of processing absorption spectra is used to measure concentrations of selected fuel gas components and calculate several fuel gas parameters, including heating value, relative density, compressibility, theoretical hydrocarbon liquid content and Wobbe index. In the described incarnation, a tunable laser diode directs near-infrared light into an optical cavity through a sample of fuel gas. A sensor measures intensity of light exiting the cavity as the laser wavelength is tuned over a specified range to construct a cavity-enhanced absorption spectrum for the fuel gas. A set of basis spectra for expected component species is used to analyze the spectrum and determine component concentrations, including methane, ethane, carbon dioxide, and other discrete and structured absorbers. Critically, a generic broadband absorption is used to model higher hydrocarbons that present themselves as nearly featureless absorption spectra. The fuel gas parameters are then calculated directly from determined component concentrations and the broadband absorption representing the higher hydrocarbons.

Patent Agency Ranking