Abstract:
A flex-rigid wiring board includes a flexible substrate, a non-flexible substrate positioned such that the non-flexible substrate is extending in horizontal direction of the flexible substrate, a first wiring layer on first surface sides of the flexible and non-flexible substrates, a second wiring layer on second surface sides of the flexible and non-flexible substrates, a first insulating layer covering the first sides of the flexible and non-flexible substrates and having an opening exposing a portion of the first side of the flexible substrate, and a second insulating layer covering the second sides of the flexible and non-flexible substrates and having an opening exposing a portion of the second side of the flexible substrate. The first wiring layer includes first conductor pattern on the first side of the flexible substrate, and the second wiring layer includes second conductor pattern extending across the second sides of the flexible and non-flexible substrates.
Abstract:
A printed circuit board package structure includes a substrate, plural ring-shaped magnetic elements, a support layer, and first conductive layers. The substrate has two opposite first and second surfaces, first ring-shaped recesses, and first grooves. Each of the first ring-shaped recesses is communicated with another first ring-shaped recess through at least one of the first grooves, and at least two of the first ring-shaped recesses are communicated with a side surface of the substrate through the first grooves to form at least two openings. The ring-shaped magnetic elements are respectively located in the first ring-shaped recesses. The support layer is located on the first surface, and covers the first ring-shaped recesses and the first grooves. The support layer and the substrate have through holes. The first conductive layers are respectively located on surfaces of support layer and substrate facing the through holes.
Abstract:
An embedded capacitor module includes an electrode lead-out portion and at least one solid electrolytic capacitor portion adjacently disposed with the electrode lead-out portion. The electrode lead-out portion comprises a first substrate, a second substrate, a first insulating material disposed between the first substrate and the second substrate, a first porous layer formed on at least one surface of the first substrate, and a first oxide layer disposed on the first porous layer. The solid electrolytic capacitor portion comprises the first substrate, the second substrate, the first porous layer, the first oxide layer, all of which are extended from the electrode lead-out portion, a first conductive polymer layer disposed on the first oxide layer, a first carbon layer disposed on the first conductive polymer layer, and a first conductive adhesive layer disposed on the first carbon layer.
Abstract:
The invention relates to a method for manufacturing a printed circuit board (10) having a substrate (2) and an electric circuit (8), in particular for a rear view device of a motor vehicle, the method comprising the following steps: manufacturing a plurality of substrate parts (2a, 2b); and selecting at least two of the substrate parts (2a, 2b), and connecting the selected substrate parts (2a, 2b) and providing the connected substrate parts (2a, 2b) with the circuit (8).
Abstract:
In some embodiments, a printed circuit board, configured to be coupled to electronic components, includes a first material portion and any number of second material portions. Each second material portion is sized and spaced apart from an adjacent second material portion such that electromagnetic waves associated with the operation of the electronic components are substantially not reflected. The first material portion defines a first dielectric constant and the second material portion defines a second dielectric constant that is different than the value of the first dielectric constant.
Abstract:
A high-frequency signal line includes a base layer including first and second principal surfaces, a signal line provided on the first principal surface, a ground conductor provided on the first principal surface along the signal line, and a plurality of high-permittivity portions arranged along the signal line and in contact with a portion of both the signal line and the ground conductor, each of the high-permittivity portions having a higher specific permittivity than the base layer.
Abstract:
A method of manufacturing a flex-rigid wiring board includes disposing a non-flexible substrate and a flexible board side by side in the horizontal direction of the substrate and board such that an end of the substrate is positioned adjacent to an end of the board and forms boundary between the board and the substrate with respect to the end of the board, covering the boundary between the board and the substrate with an insulating layer such that the insulating layer is positioned on the board and the substrate across the boundary, forming a second conductor pattern on the insulating layer, forming a via hole which passes through the insulating layer and reaches a first conductor pattern of the board, and plating the via hole such that a via conductor connecting the first and second patterns. The flexible board includes a flexible substrate and the first pattern formed over the substrate.
Abstract:
An electronic device having a printed circuit board is provided. In one embodiment, the printed circuit board includes a plurality of external pads to be coupled with an external device and a plurality of bypass pads for testing an electric circuit. The external pads are exposed and at least one of the plurality of bypass pads are not exposed from an outer surface of the PCB. A system using the electronic device and a method of testing an electronic device are also provided.
Abstract:
An object of the present invention is to allow stress that may be applied to a semiconductor package to be suppressed, when the semiconductor package is mounted on a curved board. In a mount board 1, a semiconductor package 20 is mounted on a curved board 10 including a curved surface on at least a portion thereof. The curved board 10 includes a pedestal portion 13a disposed on a region of the curved surface portion where the semiconductor package 20 is mounted and having an upper surface thereof formed flat, and a plurality of pad portions 15a disposed on the flat surface of the pedestal portion 13a. The pedestal portion 13a is formed of an insulating material. The semiconductor package 20 is mounted on the pad portions 15a.
Abstract:
A substrate with built-in electronic component includes: a core layer that includes a core material and a cavity formed in the core material and containing an insulating material; an insulating layer that includes a ground wiring and a signal wiring and is formed on the core layer; and a plurality of electronic components that each include a first terminal and a second terminal and are stored in the cavity, the plurality of electronic components each having one end portion and the other end portion, the first terminal being formed at the one end portion and connected to the ground wiring, the second terminal being formed at the other end portion and connected to the signal wiring, the plurality of electronic components having at least one of arrangements in which the first terminals face each other and in which the second terminals face each other.