Abstract:
Disclosed is a laminated (or non-laminated) conductive interconnection for joining an integrated circuit device to a device carrier, where the conductive interconnection comprises alternating metal layers and polymer layers. In addition, the polymer can include dendrites, metal projections from the carrier or device, and/or micelle brushes on the outer portion of the polymer. The polymer layers include metal particles and the alternating metal layers and polymer layers form either a cube-shaped structure or a cylinder-shaped structure.
Abstract:
An easily slidable polyimide film having a polyimide surface layer comprising a polyimide which is thermoplastic and has a glass transition temperature of 190–450° C., wherein there are dispersed in the polyimide of the polyimide surface layer, in a proportion of approximately 0.5–10 mass % based on the polyimide of the polyimide surface layer, wholly aromatic polyimide particles made of a polyimide comprising at least 80 mass % of a pyromellitic acid component and a p-phenylenediamine component, and having a median size of 0.3–0.8 μm and a maximum size of no greater than 2 μm, in at least about 1 μm of the polyimide surface layer.
Abstract:
A wiring board comprises a substrate; a resin layer which is selectively formed on one main surface of the substrate and has fine metal particles contained or adhered to its surface; and a conductive metal layer which is formed on the resin layer with the fine metal particles interposed between them.
Abstract:
A printed wiring board has a first wiring layer formed at least on one surface of an insulative substrate, an insulating layer formed as covering the first wiring layer, and a second wiring layer formed on the insulating layer. The insulating layer is formed of a cured insulative sheet made of a high-stiff sheet-type reinforcing material containing resin. The first and second wiring layers are electrically connected to each other through at least one hole having a bottom. The second wiring layer is united with the insulating layer at an interface thereof with a conductive material of the second wiring layer injected into concave sections provided on the interface. Another printed wiring board has an insulative substrate having a first surface and a second surface, a first insulating layer and a second insulating layer formed on the first surface and the second surface, respectively, and a first wiring layer formed on the first insulating layer and a second wiring layer formed on the second insulating layer. The first and second wiring layers are electrically connected to each other via at least one through hole. The first wiring layer is united with the first insulating layer at an interface thereof with a conductive material of the first wiring layer injected into concave sections provided on the interface. The second wiring layer is united with the second insulating layer at an interface thereof with a conductive material of the first wiring layer injected into concave sections provided on the interface.
Abstract:
Disclosed is a laminated (or non-laminated) conductive interconnection for joining an integrated circuit device to a device carrier, where the conductive interconnection comprises alternating metal layers and polymer layers. In addition, the polymer can include dendrites, metal projections from the carrier or device, and/or micelle brushes on the outer portion of the polymer. The polymer layers include metal particles and the alternating metal layers and polymer layers form either a cube-shaped structure or a cylinder-shaped structure.
Abstract:
A semiconductor device including: a semiconductor chip; a wiring board on which the semiconductor chip is mounted; and a plurality of external terminals provided on the wiring board. The external terminals include at least one first external terminal and two or more second external terminals. The first external terminal is formed of a soldering material. Each of the second external terminals includes a soldering material and a plurality of particles formed of a resin and dispersed in the soldering material. The second external terminals are a pair of external terminals among the external terminals, and a distance between the pair of external terminals is greater than a distance between any other pair of external terminals among the external terminals.
Abstract:
Methods of improving the adhesion of metal layers to a substrate, such as an optical substrate, are provided. Such methods employ a layer of an adhesion promoting composition including a plating catalyst on the substrate before metal deposition. Also provided are devices made by such processes.
Abstract:
This invention provides a conductive fine particle having an ability of relaxing the force applied to a circuit of a substrate or the like. A conductive fine particle, comprising a core fine particle made of resin with its surface covered with at least one metal layer, wherein the resin has a coefficient of linear expansion of from 3×10−5 to 7×10−5 (1/K).
Abstract:
Directed to an insulating resin composition which comprises (A) a novolak epoxy resin having a biphenyl structure, (B) carboxylic acid-modified acrylonitrile butadiene rubber particles, (C) a triazine ring-containing cresol novolak phenolic resin, (D) a phenolic hydroxyl group-containing phosphorus compound, and (E) inorganic filler, an insulating film having a support using the same, a multilayer wiring board, and a process for producing a multilayer wiring board.
Abstract:
A wiring board comprises a substrate; a resin layer which is selectively formed on one main surface of the substrate and has fine metal particles contained or adhered to its surface; and a conductive metal layer which is formed on the resin layer with the fine metal particles interposed between them.