Abstract:
A printed wiring board includes a substrate (20) on which a wiring pattern (12) has been formed, and a fuse (6) provided on the substrate (20). One end of the fuse (6) is directly connected to a first pad (12a) of the wiring pattern (12), and the other end of the fuse (6) is directly connected to a second pad (12b) of the wiring pattern (12). The fuse (6) is covered by a protective material (7).
Abstract:
The invention provides a method and device for building one or more passive components into a chip scale package. The method includes the steps of selecting a passive component having a terminal pitch that is a multiple of the package ball pitch of a chip scale package and mounting the selected passive component terminals to ball sites of the package. A preferred embodiment of the invention uses a single metal layer polyamide tape as the substrate of the package. Additional preferred embodiments of the invention are disclosed in which the terminal pitch multiple of the package ball pitch is one or two. Devices corresponding to the disclosed methods are also disclosed.
Abstract:
The semiconductor device comprises an insulating film in which penetrating holes are formed, a semiconductor chip having electrodes, a wiring pattern adhered by an adhesive over a region including penetrating holes on one side of the insulating film and electrically connected to the electrodes of the semiconductor chip, and external electrodes provided on the wiring pattern through the penetrating holes and projecting from the surface opposite to the surface of the substrate on which the wiring pattern is formed. Part of the adhesive is drawn in to be interposed between the penetrating holes and external electrodes.
Abstract:
An electrical circuit apparatus (300) that includes: a substrate (330) having a ground layer (336), at least one device aperture (332), and at least one solder aperture (334); a heat sink (310); and an adhesive layer (320) for mechanically coupling the heat sink to the ground layer of the substrate such that at least a portion of the substrate device aperture overlaps the heat sink, the adhesive layer having at least one device aperture and at least one solder aperture, wherein aligning the at least one substrate solder aperture with the at least one adhesive layer solder aperture and aligning the at least one substrate device aperture with the at least one adhesive layer device aperture enables solder wetting in a predetermined area between the heat sink and the ground layer of the substrate.
Abstract:
In order to protect a printed circuit board (1, 1′) especially against the development of heat by simple means, said printed circuit board includes strip conductors for electronic circuits and connections for a voltage supply unit equipped with at least one SMD-component and additional electronic and/or electromechanical parts that are soldered in a suitable manner. The voltage supply unit is connected to one or several supplying strip conductors (2). At least one of the supplying strip conductors (2) includes a break to this end which is bridged in a conductive manner by means of a fuse bridge (6), said fuse bridge (6) containing or being made of a basic material, the melting point of which is lower than the melting point of the material of which the strip conductors are made.
Abstract:
Embodiments of the invention provide thermally actuatable switches and selectively configurable circuit boards which may employ such switches. A circuit board of one embodiment includes a substrate having board leads and a plurality of electrical connectors arranged adjacent a component site. Selectively configurable circuitry may be carried by the substrate and adapted to selectively couple selected ones of the electrical connectors to selected ones of the board leads. One or more trace may be associated with each of the electrical connectors and one or more of these traces may include a thermally actuatable switch that can be selectively closed. The thermally actuatable switch may comprise a gap between two conductive lengths of the conductive trace, an exposed switch surface, and a thermally responsive member that may wet the exposed switch surface when selectively heated above an activation temperature.
Abstract:
The semiconductor device comprises an insulating film in which penetrating holes are formed, a semiconductor chip having electrodes, a wiring pattern adhered by an adhesive over a region including penetrating holes on one side of the insulating film and electrically connected to the electrodes of the semiconductor chip, and external electrodes provided on the wiring pattern through the penetrating holes and projecting from the surface opposite to the surface of the substrate on which the wiring pattern is formed. Part of the adhesive is drawn in to be interposed between the penetrating holes and external electrodes.
Abstract:
The present invention provides a number of techniques for laminating and interconnecting multiple high-layer-count (HLC) substrates to form a multilayer package or other circuit component. A solder bump may be formed on the conductive pad of at least one of two HLC substrates. The solder bump preferably is formed from an application of solder paste to the conductive pad(s). An adhesive film may be positioned between the surfaces of the HLC substrates having the conductive pads, where the adhesive film includes an aperture located substantially over the conductive pads such that the conductive pads and/or solder bumps confront each other through the aperture. The HLC substrates then may be pressed together to mechanically bond the two substrates via the adhesive. The solder bump(s) may be reflowed during or after the lamination to create a solder segment that provides an electrical connection between the two conductive pads through the aperture in the adhesive film.
Abstract:
To provide an interlayer-connected, multi-layer flexible printed circuit board having high bonding reliability and most suitable for micropatterning the circuit layers in the device; and to provide a high-productivity method for fabricating the device. A multi-layer flexible printed circuit board, wherein a conductor is filled in the through-holes formed in the insulating layer in the direction of the thickness thereof so as to electrically interconnect the circuit layers formed on both faces of the insulating layer, and wherein the conductor contains inside it, a copper-core solder ball having a copper ball as a core thereof.
Abstract:
An electrical circuit apparatus (300) that includes: a substrate (330) having a ground layer (336), at least one device aperture (332), and at least one solder aperture (334); a heat sink (310); and an adhesive layer (320) for mechanically coupling the heat sink to the ground layer of the substrate such that at least a portion of the substrate device aperture overlaps the heat sink, the adhesive layer having at least one device aperture and at least one solder aperture, wherein aligning the at least one substrate solder aperture with the at least one adhesive layer solder aperture and aligning the at least one substrate device aperture with the at least one adhesive layer device aperture enables solder wetting in a predetermined area between the heat sink and the ground layer of the substrate.