Abstract:
A wiring board including a board main body made of an insulating material and having a front surface and rear surface and side surfaces at four sides located between the front and the rear surfaces, and a wiring conductor for plating, an end surface of which is exposed on any side surface of the board main body, wherein the wiring board includes a first insulating layer formed on the side surface on which the end surface of the wiring conductor for plating is exposed to cover the end surface, and a conductor layer formed on the side surface of the board main body on which the first insulating layer is formed along a side direction of the side surface including a surface of the first insulating layer, and wherein the conductor layer is electrically connected to a ground layer formed inside the board main body.
Abstract:
A signal line that is easily inflected includes a laminated body including at least insulator layers that include flexible material and are laminated from a positive direction side in a z axis direction to a negative direction side therein in this order. A ground conductor is securely fixed to a main surface on the positive direction side of the insulation sheet in the z axis direction. A signal line is securely fixed to a main surface on the positive direction side of the insulator layer in the z axis direction. A ground conductor is securely fixed to a main surface on the positive direction side of the insulator layer in the z axis direction. The ground conductors and the signal line define a stripline structure. The laminated body is inflected so that the insulator layer is located on an inner periphery side, compared with a location of the insulator layer.
Abstract:
A signal transmission cable has a cable including a dielectric layer and a metallic layer. The signal transmission cable further includes a connector having a chip with a terminal. The connector includes a substrate having an organic layer, and a portion of the organic layer extends from the substrate so as to form the dielectric layer of the cable. The metallic layer is located on the dielectric layer and is directly connected to the terminal.
Abstract:
An output stage module for a power amplifier device (e.g., for a power amplifier device of a transmit unit of a magnetic resonance device) includes a housing and a carrier that is arranged within the housing. The carrier is made of a non-electrically-conducting, thermally-conducting material with low electrical losses (e.g., a ceramic carrier). At least two transistor dies are arranged on the carrier. At least one transistor, in each case, is assigned to a phase of a symmetrical input signal. In and/or on the carrier, a first conductor structure connecting (e.g., inductively) a drain output of the at least two transistor dies to an output signal and to second conductor structures each conducting an input signal to at least one gate input of the at least two transistor dies are provided. At least one cooling channel routed adjacent to at least one transistor die of the at least two transistor dies is provided.
Abstract:
An apparatus including a die including a device side with contact points and lateral sidewalls defining a thickness of the die; a build-up carrier coupled to the die, the build-up carrier including a plurality of alternating layers of patterned conductive material and insulating material, wherein at least one of the layers of patterned conductive material is coupled to one of the contact points of the die; and an interference shield including a conductive material disposed on the die and a portion of the build-up carrier. The apparatus may be connected to a printed circuit board. A method including forming a build-up carrier adjacent a device side of a die including a plurality of alternating layers of patterned conductive material and insulating material; and forming a interference shield on a portion of the build-up carrier.
Abstract:
A conductive-layer-integrated flexible printed circuit board includes: (A) an electromagnetic-shielding conductive layer; (B) an insulator film; and (C) a wiring-pattern-equipped film the electromagnetic-shielding conductive layer (A), the insulator film (B), and the wiring-pattern-equipped film (C) being laminated in this order, the insulator film (B) containing at least (a) a binder polymer and (b) spherical organic beads.
Abstract:
A printed circuit board (PCB) includes a wrapped conductor enabling transmission of a radio frequency (RF) signal, the wrapped conductor including a conductor core and a conductive wrap disposed on top and side surfaces of the conductor core. The PCB further includes a top dielectric layer disposed on the conductive wrap of the wrapped conductor, at least partially embedding the wrapped conductor. Resistivity of the conductive wrap is less than resistivity of the conductor core, such that a majority of RF power of the RF signal is propagated through the conductive wrap.
Abstract:
An apparatus for transmitting electrical signals is disclosed. The apparatus includes a substrate and a twisted pair of conductors located on the substrate. The twisted pair of conductors has a first layer comprising conductive material, a second layer comprising nonconductive material, and a third player comprising conductive material. The first layer has a plurality of segments separated by a plurality of gaps. The second layer is positioned in said gaps and electrically insulates a portion of the segments positioned within the gaps. The third layer is positioned over the second layer. The third layer is configured to electrically connects an end of one segment to an end of another segment. The twisted pair of conductors formed by the three dimensional structure comprises two electrically isolated conductors twisted about each other.
Abstract:
A method for manufacturing a rigid-flexible printed circuit board includes following steps. First, a flexible PCB is provided. The flexible PCB includes a base and an electrical trace layer on the base. The flexible PCB includes a first region and a second region connected to the first region. The first and second regions define a borderline. Second, a protective film and a peelable layer are sequentially formed on the electrical trace layer in the first region and part of the second region. Third, a copper coil, an adhesive tape and the flexible circuit board are laminated together. Fourth, the copper coil in the second region is etched to form an outer electrical trace layer. Last, the copper coil in the first region is removed and the peelable layer and the adhesive tape are peeled off, thereby obtaining an R-F PCB.
Abstract:
An apparatus including a die including a device side with contact points and lateral sidewalls defining a thickness of the die; a build-up carrier coupled to the die, the build-up carrier including a plurality of alternating layers of patterned conductive material and insulating material, wherein at least one of the layers of patterned conductive material is coupled to one of the contact points of the die; and an interference shield including a conductive material disposed on the die and a portion of the build-up carrier. The apparatus may be connected to a printed circuit board. A method including forming a build-up carrier adjacent a device side of a die including a plurality of alternating layers of patterned conductive material and insulating material; and forming a interference shield on a portion of the build-up carrier.