Abstract:
A printed circuit board includes a signal layer, an insulation layer, and a reference layer. A transmission line is located on the signal layer. A probing pad is located on the transmission line. Two aligned slots defined in opposite sides of the reference layer leaving a connecting portion. The slots and the connecting portion are in vertical alignment with the probing pad. The signal layer, the insulation layer, and the reference layer are configured in a cascading order. An arrangement of the signal layer in relation to the reference layer including the slots and the connecting portion reduces a capacitance effect caused by the probing pad.
Abstract:
A printed circuit board (PCB) having capabilities to measure a voltage drop of current flowing therethrough. The PCB may optionally include other capabilities for measuring, calculating, sensing, or other processing of information and data associated with the current flow or other operating conditions associated with the PCB, such as but not limited to those associated with battery monitoring systems.
Abstract:
A transition circuit board for transitioning a cable to a connector is provided. A circuit board has an outer surface with a circuit trace, ground plane and ground link provided thereon. A cable pad and a contact pad are provided at opposite ends of the circuit trace. The ground link is electrically common with the ground plane and is located adjacent to, and separated by a space from, the circuit trace. An insulating coating is provided over at least part of the circuit trace, the ground plane and the outer surface of the circuit board. The insulating coating has a mask aperture there-through exposing an uncoated portion of the circuit trace and the ground link. A conductive jumper material is provided on the uncoated portion of the circuit trace and the ground link to electrically join the circuit trace with the ground plane.
Abstract:
An exemplary printed circuit board includes a power plane, and a ground plane. The power plane includes two power modules, and an insulating medium for insulating the two power modules from each other. The ground plane is insulated from the power plane, a plurality of slots is defined in the ground plane and located close to facing edges of the two power modules, and the slots are arranged in rows along the facing edges of the two power modules.
Abstract:
A hybrid electromagnetic bandgap (EBG) structure for broadband suppression of noise on printed wiring boards includes an array of coplanar patches interconnected into a grid by series inductances, and a corresponding array of shunt LC networks connecting the coplanar patches to a second conductive plane. This combination of series inductances and shunt resonant vias lowers the cutoff frequency for the fundamental stopband. The series inductances and shunt capacitances may be implemented using surface mount component technology, or printed traces. Patches may also be interconnected by coplanar coupled transmission lines. The even and odd mode impedances of the coupled lines may be increased by forming slots in the second conductive plane disposed opposite to the transmission line, lowering the cutoff frequency and increasing the bandwidth of the fundamental stopband. Coplanar EBG structures may be integrated into power distribution networks of printed wiring boards for broadband suppression of electromagnetic noise.
Abstract:
In a communication device, a ground plane disposed on the upper or lower surface of a board or inside the board includes a first ground region disposed on a semiconductor circuit and connected thereto, and a second ground region disposed under an amplifier-and connected thereto. The first ground region and the second ground region do not overlap with each other.
Abstract:
Mesh holes 35a and 59a of upper solid layers 35 and upper solid layers 59 are formed to overlie on one another, so that the insulating properties of interlayer resin insulating layers 50 are not lowered. Here, the diameter of each mesh hole is preferably 75 to 300 μm. The reason is as follows. If the diameter of the mesh hole is less than 75 μm, it is difficult to overlay the upper and lower mesh holes on one another. If the diameter exceeds 300 μm, the insulating properties of the interlayer resin insulating layers deteriorate. In addition, the distance between the mesh holes is preferably 100 to 2000 μm. The reason is as follows. If the distance is less than 100 μm, the solid layer cannot function. If the distance exceeds 2000 μm, the deterioration of the insulating properties of the interlayer resin insulating film occurs.
Abstract:
A control board has a pattern for a low-voltage circuit including a ground pattern connectable to a ground and a pattern for a high-voltage circuit including a ground pattern. The patterns for the low-voltage and high-voltage circuits each have one or more ground-connection lands configured to connect the ground patterns thereof to each other via one or more capacitors.
Abstract:
A printed wiring board includes a substrate member, terminals and wiring pattern. The terminals are formed in a specific shape on the substrate member and arranged to be aligned in a specific arrangement direction on the substrate member. The wiring pattern is formed on the opposite side across the substrate member from a terminal portion where the terminals are formed, and a plurality of slits are formed extending in a direction perpendicular to the specific arrangement direction.
Abstract:
Mesh holes 35a and 59a of upper solid layers 35 and upper solid layers 59 are formed to overlie on one another, so that the insulating properties of interlayer resin insulating layers 50 are not lowered. Here, the diameter of each mesh hole is preferably 75 to 300 μm. The reason is as follows. If the diameter of the mesh hole is less than 75 μm, it is difficult to overlay the upper and lower mesh holes on one another. If the diameter exceeds 300 μm, the insulating properties of the interlayer resin insulating layers deteriorate. In addition, the distance between the mesh holes is preferably 100 to 2000 μm. The reason is as follows. If the distance is less than 100 μm, the solid layer cannot function. If the distance exceeds 2000 μm, the deterioration of the insulating properties of the interlayer resin insulating film occurs.