Abstract:
An electronic component includes a pedestal plate that has a first surface made of a metal and a second surface being an opposite surface to the first surface, a heating element arranged on the first surface of the pedestal plate, and a resonator element arranged on the heating element. The pedestal plate overlaps the resonator element in a plan view.
Abstract:
A base of a surface-mount electronic component package holds an electronic component element and is to be mounted on a circuit board with a conductive bonding material. The base has a principal surface and an external connection terminal to be electrically connected to the circuit board. The external connection terminal is formed in the principal surface. The base includes a bump formed on the external connection terminal. The bump is smaller than the external connection terminal. The base has a distance d between an outer periphery end edge of the external connection terminal and an outer periphery end edge of the bump along an attenuating direction of stress on the external connection terminal The stress is generated in association of mounting of the base on the circuit board. The distance d is more than 0.00 mm and equal to or less than 0.45 mm.
Abstract:
A base of an electronic component package holds an electronic component element. The base has a bottom face in a rectangular shape in plan view. The base includes a pair of terminal electrodes having a rectangular shape on the bottom face. The pair of terminal electrodes are to be bonded on an external circuit substrate with a conductive bonding material. The pair of terminal electrodes have mutually symmetrical shapes. Each of the terminal electrodes has a long side adjacent to or on an edge of a long side of the bottom face. The long side of each of the terminal electrodes is disposed parallel to the long side of the bottom face. The long side of each of the terminal electrodes has a length that is more than half a length of the long side of the bottom face.
Abstract:
A lead wire led-out type crystal oscillator of constant temperature type for high stability is disclosed, which includes a heat supply body that supplies heat to a crystal resonator from which a plurality of lead wires are led out, to maintain the temperature constant. The heat supply body includes a heat conducting plate which has through-holes for the lead wires and is mounted on the circuit board, and which faces, and is directly thermally joined to, the crystal resonator and a chip resistor for heating which is mounted on the circuit board adjacent to the heat conducting plate, and is thermally joined to the heat conducting plate.
Abstract:
A synthesizer module/oscillator assembly includes a voltage controlled oscillator with a coaxial resonator. In one embodiment, the module measures 20.3 mm×14.8 mm×3.9 mm and the coaxial resonator is positioned on the circuit board of the module between a phase locked loop integrated circuit and a main section of the voltage controlled oscillator. The phase locked loop circuit includes a loop filter and is adapted to receive the frequency signal generated by the voltage controlled oscillator and generate an adjusted frequency signal.
Abstract:
A crystal oscillator device includes a resonator having a plate-shaped resonator package and a plate-shaped circuit board having at least an oscillator circuit. The resonator package is supported above the circuit board such that the resonator package is substantially parallel to the circuit board, and supporting members which support the resonator package are arranged on a straight line on the bottom surface of the resonator package, the straight line being parallel to and near one of the sides of the bottom surface of the resonator package.
Abstract:
The present invention is one where, in a lead wire led-out type crystal oscillator of constant temperature type for high stability, comprising: a heat supply body that supplies heat to a crystal resonator from which a plurality of lead wires are led out, to maintain the temperature constant; an oscillating element that constitutes an oscillating circuit together with the crystal resonator; a temperature control element that constitutes a temperature control circuit for controlling the temperature of the crystal resonator; and a circuit board for mounting the heat supply body, the oscillating element, and the temperature control element, and through which lead wires of the crystal resonator are passed through for mounting, the heat supply body comprises: a heat conducting plate which has through-holes for the lead wires and is mounted on the circuit board, and which faces, and is directly thermally joined to, the crystal resonator; and a chip resistor for heating which is mounted on the circuit board adjacent to the heat conducting plate, and is thermally joined to the heat conducting plate. As a result, a lead wire led-out type crystal oscillator of constant temperature type for high stability wherein the structure is simplified, and in particular the height dimension is reduced can be provided. Moreover, the present invention is a constant temperature type surface mounting type crystal oscillator which uses a crystal resonator for surface mounting which is mounted on the circuit board together with the oscillating elements and temperature control elements, and is constructed such that the crystal resonator is arranged on a ceramic substrate, and at least a chip resistor for heat generation and a highly temperature-dependent highly heat sensitive element are arranged on the ceramic substrate. The structure is such that the crystal resonator is arranged on one principal plane of the ceramic substrate, and the chip resistor and the temperature sensitive element are arranged on the other principal plane of the ceramic substrate, and the other principal plane of the ceramic substrate is positioned facing one principal plane of the circuit board, and heat conductive resin is interposed between the chip resistor and the circuit board. A surface mounted crystal oscillator of constant temperature type in which miniaturization is advanced, and the structure is simplified, is provided.
Abstract:
A surface mounting package includes a metal base (1) with a lower surface having a through hole, a metal lead (2) arranged to be inserted into the through hole, an insulating material (3) filling in an internal space defined by the metal base (1), a cap (30) covering the metal base (1) as a lid, and an electronic part component arranged at a surface (2i) on the internal space side of the metal lead (2). The internal space is held at an air-tight atmosphere. The metal base (1) has a lower surface positioned on the same plane as a lower surface of the metal lead (2) or the insulating material (3), the same plane (P) forming a plane to be attached to a mounting board.
Abstract:
A dielectric substrate, a transistor, which is an active device, a varactor diode, which is a frequency-variable device, are mounted on one main surface of a package substrate to configure an oscillator. The dielectric substrate is made from a large-dielectric-constant dielectric having high temperature stability. A microstrip-line resonator is formed by thin-film-electrode forming. The microstrip-line resonator and the transistor constitute an oscillating circuit.
Abstract:
A method for affixing a resonator to a printed circuit board is provided. The method uses a thin metal film which may be affixed to a surface of a stand off, or directly to a surface of a resonator. The metalized surface may be affixed to a printed circuit board using a molten agent with a surface tension which withstands the downward force exerted by the puck's weight. The metalized surface may be affixed to a printed circuit board using a solder paste and the solder is allowed to reflow. The surface tension of the molten solder causes the resonator (or resonator puck) to self-center, ensuring proper placement and eliminating the need for repositioning. Since the resonator is not positioned using traditional glues which are subject to shifting during transportation or curing, then the resonator is not subject to shifting, eliminating the need to reposition the resonator after the resonator becomes fixed.