Abstract:
An electronic device includes: a first substrate and a second substrate; a lead frame disposed between the first and the second substrates for electrically connecting therebetween; and a first groove and a second groove disposed on the first and the second substrates, respectively. The first and the second grooves correspond to a connection portion between the first and the second substrates and the lead frame. The lead frame is connected to the first and the second substrates in such a manner that one end of the lead frame is engaged in both of the first and the second grooves through a conductive bonding material.
Abstract:
A light source module includes a circuit board on which a predetermined conductive pattern is formed, a semiconductor light emitting element mounted on the circuit board, and a plurality of power supplying terminals to which power cords for supplying electric power to the semiconductor light emitting element are connected. An entire lower face of the circuit board is electrically insulated, and the plurality of power supplying terminals is fixed onto the conductive pattern on the circuit board. The plurality of power supplying terminals protrudes from the circuit board.
Abstract:
A casing of an electronic key transmitting and receiving apparatus is formed to seal entire bodies of circuit parts, a mounting face of a printed board, on which the circuit parts are mounted, and parts of terminals while the other parts of the terminals are exposed. A rear face of the printed board opposite from the mounting face provides a part of an outer surface of the casing. When the printed board is provided in the casing through an insert molding process, the printed board is held in a cavity of a molding die such that the rear face of the printed board closely contacts an inner face of the cavity. Accordingly, deformation of the printed board due to pressure caused when the resin is poured or when the resin hardens is inhibited.
Abstract:
After respective one ends of lead wires are fixed to a printed circuit board, the lead wires are bent, the printed circuit board is brought into a case and the other ends of the lead wires are bonded to terminals of the case. Since the lead wires are processed before the substrate is brought into the case, this eliminates the necessity to perform formation of the bent portions of the lead wires and fixing of the lead wires to the substrate in a narrow space of the case and allows simplification of bonding operation. Thus provided is a lead wire bonding method for bonding lead wires with bent portions to the substrate, which simplifies a bonding operation.
Abstract:
A signal processing module can be manufactured from a plurality of composite substrate layers, each substrate layer includes elements of multiple individual processing modules. Surfaces of the layers are selectively metalicized to form signal processing elements when the substrate layers are fusion bonded in a stacked arrangement. Prior to bonding, the substrate layers are milled to form gaps located at regions between the processing modules. Prior to bonding, the leads are positioned such that they extend from signal coupling points on said metalicized surfaces into the gap regions. The substrate layers are then fusion bonded to each other such that the plurality of substrate layers form signal processing modules with leads that extend from an interior of the modules into the gap areas. The individual modules may then be separated by milling the substrate layers to de-panel the modules.
Abstract:
An improved multi-chip module includes a main circuit board having an array of electrical interconnection pads to which are mounted a plurality of IC package units. Each IC package unit includes a pair of IC packages, both of which are mounted on opposite sides of a package carrier. The package units may be mounted on one or both sides of the main circuit board. A first primary embodiment of the invention employs a laminar package carrier having a pair of major planar surfaces. Each planar surface incorporates electrical contact pads. One IC package is surface mounted on each major planar surface, by interconnecting the leads of the package with the contact pads on the planar surface, to form the IC package unit. Several different variations of the chip module are disclosed.
Abstract:
A plurality of converter circuits is connected in parallel while reducing conduction loss. A converter circuit is formed on each of a plurality of circuit boards, and a plurality of types of terminal connection patterns containing power input terminal connection patterns and power output terminal connection patterns are formed on the end portions of each of the circuit boards with the disposition positions substantially matching each other. The terminal connection patterns at the same position of each circuit board are sandwiched by each of clips of a common terminal member, each of the circuit boards is laminated and fixed, and the converter circuits of each of the circuit boards are connected in parallel. The conduction path for electrically connecting the converter circuit of each circuit board becomes short, making it possible to reduce conduction loss. Also, it is possible to mount a plurality of converter circuits without increasing the occupied area of a motherboard to be mated therewith in comparison with a case in which the circuit boards are provided side-by-side.
Abstract:
A battery includes a battery cell having a pair of terminals, a circuit board disposed on a side of the battery cell, a pair of connecting members, one end of each connecting member being attached to a respective end of the circuit board, and the other end of each connecting member being attached to the respective terminal of the battery cell, a connector having a resin path, the connector provided on the circuit board, and a molded resin portion continuously formed via the resin path, covering the circuit board and the connecting members disposed on the battery cell.
Abstract:
An insulating substrate (17) includes a surface conductive layer (25) fixedly laminated on a surface of the plate-like semiconductor body (21) via a surface side fixing member (24, 26). The surface side fixing member (24, 26) includes a first fixing portion (26) for fixing one part (25a) of the surface conductive layer (25) located underneath the joint portion (15) of the electrode terminal (14), and a second fixing portion (24) for fixing the other part (25b) of the surface conductive layer (25) which is not located underneath the joint portion (15), and a fixing strength exhibited by the first fixing portion (26) is smaller than that exhibited by the second fixing portion (24).
Abstract:
A printed circuit board with SMD components electrically connected to the printed circuit board by means of a reflow soldering process. In order to provide the printed circuit board with connection elements which can be mounted at minimal cost, the printed circuit board is provided with one or more connection elements for making an electric connection to other electric components. These connection elements are journaled in recesses of the printed circuit board and do not project to the exterior via the surface of the printed circuit board on which the SMD components are secured.