Abstract:
Micro-spectral sensors and methods are presented in which a Fizeau wedge interference filter is disposed between a focal plane array and a visible scene with an increasing wedge filter dimension varying along a scan direction, where the scene is scanned along the FPA to obtain light intensity measurements of a given scene location at different times using different FPA sensor elements through different wedge filter thicknesses, and the measurements correlated to the given scene location are Fourier transform to generate spectral data for the location.
Abstract:
A tunable optical filter is disclosed having an input port, a beam translator for translating input and output optical beams, an element having optical power for collimating the translated beam, a reflective wavelength dispersive element, and an output port. The beam translator can include a tiltable MEMS mirror coupled to an angle-to-offset optical element. An output port can be extended into a plurality of egress ports, each receiving a fraction of the scanned optical spectrum. A multi-path scanning optical spectrometer can be used as an optical channel monitor for monitoring performance of a wavelength selective switch, or for other tasks.
Abstract:
The present invention provides a small spectroscope that has a short response time. A spectroscope according to one embodiment of the present invention includes: a beam deflector that includes an electro-optic crystal, having an electro-optic effect, and paired electrodes used to apply an electric field inside the electro-optic crystal; spectroscopic means for dispersing light output by the beam deflector; and wavelength selection means for selecting light having an arbitrary wavelength from the light dispersed and output by the spectroscopic means.
Abstract:
A hyperspectral imaging system has fore-optics including primary, secondary and tertiary fore-optics mirrors, and an imaging spectrometer including primary, secondary and tertiary spectrometer mirrors. Light from a distant object is collected by the primary fore-optics mirror, and the tertiary fore-optics mirror forms an intermediate object image at an entrance side of a spectrometer slit. The spectrometer mirrors are configured so that light from an exit side of the slit is diffracted by a grating on the secondary mirror, and an image representing spectral and spatial components of the object is formed by the tertiary spectrometer mirror on a focal plane array. The surface of each mirror of the fore-optics and the spectrometer has an associated axis of symmetry. The mirrors are aligned so that their associated axes coincide to define a common system axis, thus making the imaging system easier to assemble and align in relation to prior systems.
Abstract:
Color measurement using compact devices is described herein. A color measurement device can include a diffraction grating that receives light reflected from a surface whose color is being measured. The diffraction grating is responsive to a control signal to split selected components from the reflected light and to admit the components in sequence to a sensor. The components can correspond to a selected wavelength or frequency of the reflected light. The sensor measures the energy or power level of each of the admitted components. The device can support determining a spectral representation of the color of the surface by generating output signals representing the various energy or power levels of each component of the light reflected from the surface.
Abstract:
A scanning confocal microscopy system and apparatus, especially useful for endoscopy with a flexible probe which is connected to the end of an optical fiber (9). The probe has a grating (12) and a lens (14) which delivers a beam of multi-spectral light having spectral components which extend in one dimension across a region of an object and which is moved to scan in another dimension. The reflected confocal spectrum is measured to provide an image of the region.
Abstract:
A spectrophotometer including: a) a light source switching mechanism for switching a plurality of light sources by swinging a light source mirror; b) a filter selecting mechanism; c) a diffraction grating rotating mechanism; and d) a controller for determining the operation origins of the three driving mechanisms using a rough origin sensor provided for the diffraction grating rotating mechanism and a photometer. The operation of the controller is to: i) determine an origin of the movement of the filter by making an end of the filter frame to touch a stopper; ii) determine a rough origin of the diffraction grating using the rough origin sensor; and iii) determine an origin of the movement of the light source mirror and a precise origin of the movement of the diffraction grating by detecting the position at which the photometer detects the maximum intensity of light.
Abstract:
A photodiode array spectrometer for determining the spectral composition of a plychromatic beam of radiation comprises diffraction means (10) which generate from the polychromatic beam a diffracted beam with a plurality of spatially separated diffracted rays of different wavelengths (.lambda..sub.1, .lambda..sub.2, .lambda..sub.3). A photodiode array (11) receives the diffracted beam whereby each photodiode intercepts a different spectral portion of the beam. A rotatable transparent plate (8) is provided in the beam path in front of the diffraction means (10) which, due to refraction of the beam upon entering and leaving the plate (8), permits to vary the direction of the beam impinging on the diffraction means (10) and therefore the direction of the diffracted beam in small steps depending on the angle of rotation of the plate (8). By the stepwise displacement of the diffracted beam across the photodiode array (11), a better sampling of the diffracted beam and therefore an improved spectral resolution is achieved. The invention can be used in the spectrometric analysis of a sample contained in a sample cell ( 5), whereby the sample cell is irradiated with polychromatic light from a light source (1).
Abstract:
A computer controlled optical system for automatically acquiring and storing spectral radiance data for a multiplicity of targets. Several measurement modes are available for each target ranging from a single wavelength measurement to measurement over a plurality of discrete wavelengths. Stepping motive means prompted by computer instructions direct the apparatus to a given set of target coordinates.
Abstract:
A system for high gain stimulated Raman spectroscopy comprises a first continuous wave laser having an output beam at a tunable optical frequency modulated at a first RF frequency, a second continuous wave laser having a second output beam at an optical frequency modulated at a second RF frequency, wherein the modulation frequencies are selected such that their beat notes represent a Raman resonance frequency, a dual-beam rasterizing probe including first and second photosensors and a rasterizer configured to scan the first and second laser output beams onto a sample, exposing the sample to a reduced average power of laser radiation stimulating the sample to emit Raman radiation signals. The Raman signals are directed to the photosensors and the outputs of the photosensors are supplied to a differential amplifier configured to provide sensitivity and gain to signals at the beat note resonant frequency and to filter signals at other frequencies.