Abstract:
A method for producing aligned passages through substrate materials, in which the projection of the inlet and outlet openings does not coincide, uses displaced application of etching windows on opposite sides and corresponding pronounced under-etching of these windows. By applying displaced etching windows on both sides of the substrate and through-etching the substrate through these windows, `oblique` passages are obtained through the substrate. By a suitable location of the windows it is also possible to produce branched passages with more than one outlet opening.
Abstract:
In a flexible printed wiring board (1), a first electrical conduction pattern (4) prepared on the first surface (3a) on which a bare chip (2) is mounted is prepared only inside a mounting region (3c) of the bare chip. Preferably, the first electrical conduction patterns (4) are prepared so as to avoid positions opposite to test electrodes (2b) which the bare chip comprises. Thereby, in the flexible printed wiring board used for mounting the bare chip, occurrence of malfunction resulting from electrical connection with a part other than a bump of the bare chip can be certainly prevented, and reliability of various devices using the bare chip can be improved.
Abstract:
Described examples include a method of fabricating a gas cell, including forming a cavity in a first substrate, providing a nonvolatile precursor material in the cavity of the first substrate, bonding a second substrate to the first substrate to form a sealed cavity including the nonvolatile precursor material in the cavity, and activating the precursor material after or during forming the sealed cavity to release a target gas inside the sealed cavity.
Abstract:
A method of forming an multi-chip carrier that includes providing a trace structure using an additive forming method. The method includes forming a metal layer on a trace structure to provide electrically conductive lines. A dielectric material may then be formed on the electrically conductive lines to encapsulate a majority of the electrically conductive lines. The ends of the electrically conductive lines that are exposed through the upper surface of the dielectric material provide a top processor mount location and the ends of the electrically conductive lines that are exposed through the sidewalls of the dielectric material provide a sidewall processor mount location.
Abstract:
A method of manufacturing a through-hole electrode substrate includes forming a plurality of through-holes in a substrate, forming a plurality of through-hole electrodes by filling a conductive material into the plurality of through-holes, forming a first insulation layer on one surface of the substrate, forming a plurality of first openings which expose the plurality of through-hole electrodes corresponding to each of the plurality of through-hole electrodes, on the first insulation layer and correcting a position of the plurality of first openings using the relationship between a misalignment amount of a measured distance value of an open position of a leaning through-hole among the plurality of through-holes and of a design distance value of the open position of the leaning through-hole among the plurality of through-holes with respect to a center position of the substrate.
Abstract:
A method of manufacturing a through-hole electrode substrate includes forming a plurality of through-holes in a substrate, forming a plurality of through-hole electrodes by filling a conductive material into the plurality of through-holes, forming a first insulation layer on one surface of the substrate, forming a plurality of first openings which expose the plurality of through-hole electrodes corresponding to each of the plurality of through-hole electrodes, on the first insulation layer and correcting a position of the plurality of first openings using the relationship between a misalignment amount of a measured distance value of an open position of a leaning through-hole among the plurality of through-holes and of a design distance value of the open position of the leaning through-hole among the plurality of through-holes with respect to a center position of the substrate.
Abstract:
A printed wiring board includes an insulating substrate having a penetrating hole formed through the substrate, a first conductive pattern formed on first surface of the substrate, a second conductive pattern formed on second surface of the substrate on the opposite side of the first surface, and a through-hole conductor formed in the penetrating hole in the substrate such that the conductor is connecting the first conductive pattern on the first surface of the substrate and the second conductive pattern on the second surface of the substrate. The penetrating hole has a first opening portion opening on the first surface of the substrate, a second opening portion opening on the second surface of the substrate and a third opening portion connecting the first and second opening portions, and the third opening portion has the maximum diameter which is greater than the minimum diameters of the first and second opening portions.
Abstract:
A method including a) forming a through-hole in a dummy substrate including a surface by radiating a laser to the surface of the dummy substrate in a state where the dummy substrate is moved relative to the laser along a direction parallel to the surface of the dummy substrate, b) determining an angle α (−90°
Abstract:
A method for manufacturing a printed wiring board including providing a starting material including an insulating resin substrate having first and second surfaces, irradiating laser upon the first surface of the insulating resin substrate such that a first opening portion having an opening on the first surface is formed, irradiating laser upon the second surface of the insulating resin substrate such that a second opening portion having an opening on the second surface and communicated to the first opening portion is formed and that a penetrating-hole having the first and second opening portions is formed, forming a first conductor on the first surface of the insulating resin substrate, forming a second conductor on the second surface of the insulating resin substrate, and forming a through hole conductor structure in the penetrating-hole to electrically connecting the first conductor and the second conductor.
Abstract:
A printed wiring board has an insulating resin substrate having a first surface and a second surface, the insulating resin substrate having one or more penetrating-holes passing through the insulating resin substrate from the first surface to the second surface, a first conductor formed on the first surface of the insulating resin substrate, a second conductor formed on the second surface of the insulating resin substrate, and a through-hole conductor structure formed in the penetrating-hole of the insulating resin substrate and electrically connecting the first conductor and the second conductor. The penetrating-hole has a first portion having an opening on the first surface and a second portion having an opening on the second surface. The first portion and the second portion are connected such that the first portion and the second portion are set off from each other.