Abstract:
Provided herein are approaches for improving ion beam extraction stability and ion beam current for an ion extraction system. In one approach, a source housing assembly may include a source housing surrounding an ion source including an arc chamber, the source housing having an extraction aperture plate mounted at a proximal end thereof. The source housing assembly further includes a vacuum liner disposed within an interior of the source housing to form a barrier around a set of vacuum pumping apertures. As configured, openings in the source housing assembly, other than an opening in the extraction aperture plate, are enclosed by the extraction aperture plate and the vacuum liner, thus ensuring appendix arcs or extraneous ions produced outside the arc chamber remain within the source housing. Just those ions produced within the arc chamber exit the source housing through the opening of the extraction aperture plate.
Abstract:
The use of the electride form of 12CaO-7Al2O3, or C12A7, as a low work function electron emitter in a hollow cathode discharge apparatus is described. No heater is required to initiate operation of the present cathode, as is necessary for traditional hollow cathode devices. Because C12A7 has a fully oxidized lattice structure, exposure to oxygen does not degrade the electride. The electride was surrounded by a graphite liner since it was found that the C12A7 electride converts to it's eutectic (CA+C3A) form when heated (through natural hollow cathode operation) in a metal tube.
Abstract:
The disclosure is directed to a system and method of fueling and mitigating debris for an illumination source. An illumination system may include a plasma-based illumination source. The illumination system may provide illumination along an illumination path emanating from an illumination origin of the illumination source. A gas jet nozzle may be disposed at a selected distance from the illumination origin or proximate to the illumination origin. The gas jet nozzle may be configured to provide fuel gas to fuel the plasma-based illumination source. The gas jet nozzle may be further configured to provide fuel gas in a selected direction substantially opposite to a direction of illumination emanating from the illumination origin to remove at least a portion of debris from the illumination path.
Abstract:
A method and apparatus are disclosed for controlling a semiconductor process temperature. In one embodiment a thermal control device includes a heat source and a housing comprising a vapor chamber coupled to the heat source. The vapor chamber includes an evaporator section and a condenser section. The evaporator section has a first wall associated with the heat source, the first wall having a wick for drawing a working fluid from a lower portion of the vapor chamber to the evaporator section. The condenser section coupled to a cooling element. The vapor chamber is configured to transfer heat from the heat source to the cooling element via continuous evaporation of the working fluid at the evaporator section and condensation of the working fluid at the condenser section. Other embodiments are disclosed and claimed.
Abstract:
An ion thruster, comprising: a discharge chamber for accelerating ions towards one direction; an inflow opening for intake of a propellant into the discharge chamber; a discharge cathode, shaped in a form of a propeller, for releasing electrons in the discharge chamber, thereby ionizing the propellant in the discharge chamber, wherein the discharge cathode is rotatable around an axis, thereby propelling inward to the discharge chamber the propellant thereof; an outflow opening for exhausting the ions from the discharge chamber; and an accelerator electrode, shaped in a form of a propeller, for accelerating the ions towards the one direction of the outflow opening, wherein the accelerator electrode is rotatable around an axis, thereby propelling outward from the discharge chamber the ions and neutral atoms thereof; wherein the ion thruster comprises electromagnetic coils for generating a magnetic field inside the discharge chamber.
Abstract:
The invention relates to methods of controlling the effect of ions of an ionisable source gas that can react with interior surfaces of an arc chamber, by introducing ions of a displacement gas into the arc chamber, where the displacement gas ions are more chemically reactive with the material of the interior surfaces than the ions of the source gas. The source gas ions may typically be oxygen ions and the displacement gas ions are then typically fluorine ions where the interior surfaces comprise tungsten. The fluorine ions may, by way of example, be sourced from fluorine, silicon tetrafluoride or nitrogen trifluoride.
Abstract:
A mass spectrometric apparatus capable of generating and detecting positive and negative ions stably at the same time. The apparatus preferably comprises: an opening through which a sample gas is introduced; an ion source to generate ions of the sample gas; and a mass spectrometer to analyze the mass of the generated ions. The ion source utilized with the mass spectrometric device comprises: a first needle electrode on which a voltage is applied in order to generate positive ions of the sample gas introduced through the opening; a first counter electrode having a first opening through which the sample gas and the positive ions pass; a second counter electrode disposed opposite the first counter electrode having a second opening through which the sample gas and the positive ions pass; a second needle electrode on which voltage is applied in order to generate negative ions of the sample gas; and a vent through which the sample gas is ejected. Generated ions are then introduced into a vacuum region via an aperture and subjected to mass analysis.
Abstract:
A soft ionization device is disclosed that comprises a series of electrodes having spacing less than the means free path of the molecules to be ionized. In some embodiments, the soft ionization device is used in various applications that require ion or electron sources such as biological or chemical reactors, ion milling, and numerous replacements for conventional hot cathode systems. In another embodiment, a valence spectrometer is disclosed that is configured to variably ionize molecules by their valiancy. In other embodiments, the ionization device is coupled to a spectrometer for the characterization of biological matter. Also disclosed is a preconditioner for preparing biological matter to be ionized.
Abstract:
Devices are disclosed that incorporate an ionization device for generating ions and electrons having first and second conductive electrodes that are separated by less than the mean-free-path of molecules being ionized. Electrons generated by the ionization device may be used for applications such as light sources, electron bombardment sensors, thyratrons, vacuum tubes, plasma displays, and microwave switches, and ions generated by the ionization device may be used, inter alia, in connection with ion focused milling devices, maskless ion implantation devices, ion beam lithography devices, semiconductor mask modification devices, and semiconductor chip wiring devices. Methods of use and manufacture are also provided.
Abstract:
A filament includes a filament rod having an electron-emitting portion, a pair of leads, and a pair of connection portions. The electron-emitting portion is disposed in the arc chamber. The leads extend from the sidewall of the arc chamber to the outside of the arc chamber. The leads are connected to a filament power source. The connecting portions extend from the sidewall of the arc chamber to the inside of the arc chamber. The connection portions are connected between the electron-emitting portion and the leads. The connection portions have an electrical resistance less than that of the electron-emitting portion. Thus, electrons are thermoelectrically emitted into the arc chamber from the electron emission portion rather than the connection portions. An electron emission rate may also be increased. In addition, since the filament has a longer useful life, downtime of an ion implanter including the ion source may be decreased.