Abstract:
The invention relates to a cathode arrangement comprising: a cathode body housing an emission surface for emitting electrons in a longitudinal direction, wherein the emission surface is bounded by an emission perimeter; a focusing electrode at least partially enclosing the cathode body in a transversal direction and comprising an electron transmission aperture for focusing the electrons emitted by the emission surface, wherein the aperture is bounded by an aperture perimeter, wherein the cathode body is moveably arranged within the focusing electrode over a maximum transversal distance from an aligned position, and wherein the aperture perimeter transversally extends over the emission surface and beyond the emission perimeter over an overlap distance that exceeds the maximum transversal distance.
Abstract:
The invention relates to a projection lens assembly for directing a beam toward a target. This assembly includes a lens support body (52) that spans a plane (P), and has a connection region (58) and a lateral edge (56). The lens support body is arranged for insertion into a frame (42) of a processing unit along an insertion direction (X) parallel with the plane (P). The projection lens assembly includes conduits (60-64) emanating from the connection region, and a conduit guiding body (70-81) for accommodating the conduits. The guiding body includes a first guiding portion (72) for guiding the conduits from the connection region, along the plane to a lateral region (B) beyond the lateral edge. The guiding body also includes a second guiding portion (78) for guiding the conduits from the lateral region (B) toward a tilted edge (79) of the conduit guiding body.
Abstract:
The invention relates to a drying apparatus for use in a lithography system for drying at least part of a surface on a first side of a planar target, such as a wafer. The apparatus has a drying device for eliminating liquid or droplets thereof from the first side of the planar target. The drying device has a first slit and a second slit arranged in close proximity of the target. A gap is present between the target and the drying device. Pressurized gas may be supplied via the first slit into the gap. The liquid may be discharged from the target by means of the pressurized gas through the second slit. The first and the second slit are configured to enable the pressurized gas to flow along the first side of the planar target substantially parallel to the planar target.
Abstract:
A charged particle lithography system for transferring a pattern onto the surface of a target, comprising a source for generating a charged particle beam, a first chamber housing the source, a collimating system for collimating the charged particle beam, a second chamber housing the collimating system, and a first aperture array element for generating a plurality of charged particle subbeams from the collimated charged particle beam.
Abstract:
An arrangement for generating plasma, the arrangement comprising a primary plasma source (1) comprising a primary source chamber (15) and a first coil (4) for generating plasma in the primary source chamber, a secondary plasma source (25) comprising a secondary source chamber (16) and a second coil (26) for enhancing plasma generated by the primary plasma source and/or generating plasma in the secondary source chamber generating plasma in the primary source chamber, a hollow guiding body (11) arranged for guiding at least a portion of the plasma generated by the primary plasma source to the secondary plasma source, and an outlet (14) for emitting at least a portion of the plasma generated by the arrangement.
Abstract:
The invention relates to a method of exposing a target by means of a plurality of beamlets. First, a plurality of beamlets is provided. The beamlets are arranged in an array. Furthermore, a target to be exposed is provided. Subsequently, relative movement in a first direction between the plurality of beamlets and the target is created. Finally, the plurality of beamlets is moved in a second direction, such that each beamlet exposes a plurality of scan lines on the target. The relative movement in the first direction and the movement of the plurality of beamlets in the second direction are such that the distance between adjacent scan lines exposed by the plurality of beamlets is smaller than a projection pitch Pproj,X in the first direction between beamlets of the plurality of beamlets in the array.
Abstract:
A projection lens arrangement for a charged particle multi-beamlet system, the projection lens arrangement including one or more plates and one or more arrays of projection lenses. Each plate has an array of apertures formed in it, with projection lenses formed at the locations of the apertures. The arrays of projection lenses form an array of projection lens systems, each projection lens system comprising one or more of the projection lenses formed at corresponding points of the one or more arrays of projection lenses.
Abstract:
The invention relates to a charged particle lithography system for patterning a target. The lithography system has a beam generator for generating a plurality of charged particle beamlets, a beam stop array with a beam-blocking surface provided with an array of apertures; and a modulation device for modulating the beamlets by deflection. The modulation device has a substrate provided with a plurality of modulators arranged in arrays, each modulator being provided with electrodes extending on opposing sides of a corresponding aperture. The modulators are arranged in groups for directing a group of beamlets towards a single aperture in the beam stop array. Individual modulators within each group have an orientation such that a passing beamlet, if blocking is desired, is directed to a blocking position onto the beam stop array. Beamlet blocking positions for different beamlets are substantially homogeneously spread around the corresponding single aperture in the beam stop array.
Abstract:
The invention relates to an alignment apparatus for aligning a substrate, and a substrate processing system comprising such alignment apparatus. The alignment apparatus comprises an alignment base for supporting said substrate and/or a substrate support member, and a force generating device for applying a contact force on said substrate.The force generating device comprises: an arm comprising a rigid proximal end a rigid distal end provided with a contact section for contacting an edge of said substrate, and an elastically deformable arm section extending between the rigid proximal and distal ends, a connection part connecting said rigid proximal end to said alignment base, said arm being movable with respect to said alignment base via said connection part, and an actuator for acting on and causing a displacement of said rigid proximal end, whereby said contact force, defined by said elastically deformable arm section, is applied to said substrate by said contact section.
Abstract:
Charged particle beamlet lithography system for transferring a pattern to a surface of a target comprising a sensor for determining one or more characteristics of one or more charged particle beamlets. The sensor comprises a converter element for receiving charged particles and generating photons in response. The converter element comprises a surface for receiving one or more charged particle beamlets, the surface being provided with one or more cells for evaluating one or more individual beamlets. Each cell comprises a predetermined blocking pattern of one or more charged particle blocking structures forming multiple knife edges at transitions between blocking and non-blocking regions along a predetermined beamlet scan trajectory over the converter element surface. The converter element surface is covered with a coating layer substantially permeable for said charged particles and substantially impermeable for ambient light. An electrically conductive layer is located between the coating layer and the blocking structures.