Abstract:
A metal organic framework comprising zinc (II) ions and second metal ions, such as iron (II) ions, cobalt (II) ions, and copper (II) ions as nodes or clusters and coordinated 1,3,5-benzenetricarboxylic acid struts or linkers between them forming a porous coordination network in the form of polyhedral crystals that are isostructural to HKUST-1. Transmetallation processes for producing the metal organic frameworks, as well as methods for applications of the metal organic frameworks as catalysts, specifically catalysts for the oxidation of cyclic hydrocarbons, such as toluene, cyclohexane, and methylcyclohexane.
Abstract:
This invention relates to a hydrodesulfurization catalyst, a method for preparing the catalyst, and a method for the preparation of low sulfur gasoline fuel with minimal loss of RON. The catalyst particles include a group VIB metal and a support material having relatively high surface area, and optionally includes one or more group VIIIB metal. The method for preparing the catalyst allows for greater loading of the active metal species on the surface of the support material under aqueous reaction conditions.
Abstract:
The present invention relates to the use of mesoporous graphitic particles having a loading of sintering-stable metal nanoparticles for fuel cells and further electrochemical applications, for example as constituent of layers in electrodes of fuel cells and batteries.
Abstract:
A unique process and catalyst is described that operates efficiently for the direct production of a high cetane diesel type fuel or diesel type blending stock from stochiometric mixtures of hydrogen and carbon monoxide. This invention allows for, but is not limited to, the economical and efficient production high quality diesel type fuels from small or distributed fuel production plants that have an annual production capacity of less than 10,000 barrels of product per day, by eliminating traditional wax upgrading processes. This catalytic process is ideal for distributed diesel fuel production plants such as gas to liquids production and other applications that require optimized economics based on supporting distributed feedstock resources.
Abstract:
A hydroconversion catalyst with a bimodal pore structure: an oxide matrix predominantly of calcined aluminium; a hydro-dehydrogenative active phase of at least one group VIII metal being at least partly commixed within the said oxide matrix mainly made up of calcined aluminium, an SBET specific surface greater than 100 m2/g, a mesoporous median diameter in volume between 12 and 25 nm inclusive, a macroporous median diameter in volume between 250 and 1500 nm inclusive, a mesoporous volume as measured by mercury intrusion porosimeter greater than or equal to 0.55 ml/g and a total measured pore volume by mercury porosimetry greater than or equal to 0.70 ml/g; a method for preparing a residue catalyst for hydroconversion/hydroprocessing by commixing the active phase with a particular alumina, the use of the catalyst in hydroproces sing, including hydroproces sing heavy feeds.
Abstract:
This invention relates to a hydrodesulfurization catalyst, a method for preparing the catalyst, and a method for the preparation of low sulfur gasoline fuel with minimal loss of RON. The catalyst particles include a group VIB metal and a support material having relatively high surface area, and optionally includes one or more group VIIIB metal. The method for preparing the catalyst allows for greater loading of the active metal species on the surface of the support material under aqueous reaction conditions.
Abstract:
A unique process and catalyst is described that operates efficiently for the direct production of a high cetane diesel type fuel or diesel type blending stock from stoichiometric mixtures of hydrogen and carbon monoxide. This invention allows for, but is not limited to, the economical and efficient production high quality diesel type fuels from small or distributed fuel production plants that have an annual production capacity of less than 10,000 barrels of product per day, by eliminating traditional wax upgrading processes. This catalytic process is ideal for distributed diesel fuel production plants such as gas to liquids production and other applications that require optimized economics based on supporting distributed feedstock resources.
Abstract:
A catalyst carrier may have a cross-sectional shape that may include a plurality of surface channels having a first channel width and a second channel width, where the first channel width may be closer to a periphery of the cross-sectional shape than the second channel width and the first channel width may be less than the second channel width. The cross-sectional shape may further include a plurality of surface features where at least one surface feature is located between at least one pair of surface channels. The cross-sectional shape may further include a ratio LOC/LSCP of at least about 1.7, where LOC is a length of a total contour of the cross-sectional shape and LSCP is a length of an outer simple convex perimeter of the cross-sectional shape.
Abstract:
Carbide-derived carbons are provided that have high dynamic loading capacity for high vapor pressure gasses such as H2S, SO2, or NH3. The carbide-derived carbons can have a plurality of metal chloride or metallic nanoparticles entrapped therein. Carbide-derived carbons are provided by extracting a metal from a metal carbide by chlorination of the metal carbide to produce a porous carbon framework having residual metal chloride nanoparticles incorporated therein, and annealing the porous carbon framework with H2 to remove residual chloride by reducing the metal chloride nanoparticles to produce the metallic nanoparticles entrapped within the porous carbon framework. The metals can include Fe, Co, Mo, or a combination thereof. The carbide-derived carbons are provided with an ammonia dynamic loading capacity of 6.9 mmol g−1 to 10 mmol g−1 at a relative humidity of 0% RH to 75% RH.
Abstract:
The present invention relates to a method for manufacturing ultra-porous photocatalytic materials, to the ultra-porous photocatalytic materials obtained by such a method, as well as to the uses thereof for producing hydrogen, treating wastewater and polluted water, treating polluted air, or furthermore to the use of same as catalytic membranes in fuel cells. Finally, a last aim of the invention relates to articles chosen among hydrogen production devices, self-cleaning glass panes and antipollution walls.