Abstract:
In a forming method of an inertial sensor, a trench is formed in a conducting material layer, so that a formed movable comb tooth structure can be spaced from the conducting material layer. A thin film layer is further arranged at a bottom of the trench. The thin film layer can be used not only for realizing etching blocking, but also for fixing comb teeth of the movable comb tooth structure while executing an etching process for forming the movable comb tooth structure, thereby avoiding damage to side walls of the comb teeth due to torsion of the comb teeth. In addition, a thickness of the thin film layer can be made small, and correspondingly, the thin film layer can be removed by a small etching amount, without causing a large amount of erosion to other film layers, which is conducive to guaranteeing stability of modules in a device.
Abstract:
A membrane is formed through processes including depositing a first piezoelectrical layer, depositing a first electrode layer over the first piezoelectrical layer, patterning the first electrode layer to form a first electrode, depositing a second piezoelectrical layer over the first electrode, depositing a second electrode layer over the second piezoelectrical layer, patterning the second electrode layer to form a second electrode, and depositing a third piezoelectrical layer over the second electrode. The third piezoelectrical layer, the second piezoelectrical layer, and the first piezoelectrical layer are etched to form a through-hole. The through-hole is laterally spaced apart from the first electrode and the second electrode. A first contact plug and a second contact plug are then formed to electrically connect to the first electrode and the second electrode, respectively.
Abstract:
The present disclosure provides a CMOS structure, including a substrate, a metallization layer over the substrate, a sensing structure over the metallization layer, and a signal transmitting structure adjacent to the sensing structure. The sensing structure includes an outgassing layer over the metallization layer, a patterned outgassing barrier over the outgassing layer; and an electrode over the patterned outgassing barrier. The signal transmitting structure electrically couples the electrode and the metallization layer.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
A method for fabricating an electronic device is disclosed. In one example, the method comprises providing a semiconductor wafer, forming a plurality of cavities into the semiconductor wafer, filling a stabilization material into the cavities, fabricating a temporary panel by applying a cap sheet onto the semiconductor wafer, the cap sheet covering the cavities, singulating the temporary panel into a plurality of semiconductor devices, fabricating an embedded wafer by embedding the semiconductor devices in an encapsulant, removing the cap sheet of each one of the semiconductor devices, and singulating the embedded wafer into a plurality of electronic devices.
Abstract:
The present disclosure provides a CMOS structure, including a substrate, a metallization layer over the substrate, a sensing structure over the metallization layer, and a signal transmitting structure adjacent to the sensing structure. The sensing structure includes an outgassing layer over the metallization layer, a patterned outgassing barrier over the outgassing layer; and an electrode over the patterned outgassing barrier. The signal transmitting structure electrically couples the electrode and the metallization layer.
Abstract:
A method for fabricating packaged semiconductor devices (100) with an open cavity (110a) in panel format; placing (process 201) on an adhesive carrier tape a panel-sized grid of metallic pieces having a flat pad (230) and symmetrically placed vertical pillars (231); attaching (process 202) semiconductor chips (101) with sensor systems face-down onto the tape; laminating (process 203) and thinning (process 204) low CTE insulating material (234) to fill gaps between chips and grid; turning over (process 205) assembly to remove tape; plasma-cleaning assembly front side, sputtering and patterning (process 206) uniform metal layer across assembly and optionally plating (process 209) metal layer to form rerouting traces and extended contact pads for assembly; laminating (process 212) insulating stiffener across panel; opening (process 213) cavities in stiffener to access the sensor system; and singulating (process 214) packaged devices by cutting metallic pieces.
Abstract:
The present disclosure provides one embodiment of an integrated microphone structure. The integrated microphone structure includes a first silicon substrate patterned as a first plate. A silicon oxide layer formed on one side of the first silicon substrate. A second silicon substrate bonded to the first substrate through the silicon oxide layer such that the silicon oxide layer is sandwiched between the first and second silicon substrates. A diaphragm secured on the silicon oxide layer and disposed between the first and second silicon substrates such that the first plate and the diaphragm are configured to form a capacitive microphone.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
The present invention relates to a method for manufacturing an acceleration sensor. In the method, thin SOI-wafer structures are used, in which grooves are etched, the walls of which are oxidized. A thick layer of electrode material, covering all other material, is grown on top of the structures, after which the surface is ground and polished chemo-mechanically, thin release holes are etched in the structure, structural patterns are formed, and finally etching using a hydrofluoric acid solution is performed to release the structures intended to move and to open a capacitive gap.