Abstract:
This far-infrared spectroscopy device is provided with: a variable wavelength far-infrared light source that generates first far-infrared light; an illuminating optical system that irradiates a sample with the first far-infrared light; a detecting nonlinear optical crystal that converts second far-infrared light into near-infrared light using pump light, said second far-infrared light having been transmitted from the sample; and a far-infrared image-forming optical system that forms an image of the sample in the detecting nonlinear optical crystal. The irradiation position of the first far-infrared light on the sample does not depend on the wavelength of the first far-infrared light.
Abstract:
In one aspect, a hyperspectral image measurement device is provided to include: a main body; an illumination module disposed in the main body and including LEDs having different peak wavelengths to irradiate light to a subject; a camera disposed on the main body and receiving light reflected from the subject to acquire an image of the subject; a barrel having a contact surface contacting the subject, the contact surface located to be spaced apart from the illumination module and the camera module by a predetermined distance; and a reference cover located on the contact surface and including a standard reflection layer for reflecting light irradiated from the illumination module toward the camera module.
Abstract:
An electro-optic detector for detecting terahertz radiation comprising an electro-optic material through which the terahertz radiation passes; a probe for transmitting probe radiation into the electro-optic material; an optical arrangement for causing the probe radiation to make multiple passes through the electro-optic material and a radiation detector for detecting the probe radiation after the multiple passes are made.
Abstract:
A resin identification device capable of measuring samples having various shapes is provided. The resin identification device includes a Fourier transform infrared spectrophotometer (FTIR), and sample placing plates 31 and 32 having an opening 33. The FTIR includes: an infrared light source section 10, irradiating a sample S with infrared light; an infrared light detection section 20, detecting light intensity information of the infrared light reflected from the sample S; and a control section 50, obtaining the light intensity information. By replacement of the sample S in a predetermined position so as to block off the opening 33, the infrared light source section 10 irradiates infrared light on a lower surface of the sample S, and the infrared light detection section 20 detects the light intensity information of the infrared light reflected by the lower surface of the sample S.
Abstract:
An apparatus for measuring a reference spectrum includes a parameter adjuster configured to adjust a parameter of a spectroscope so that an intensity of a reflection spectrum of a sample has a value in a range, a reference material spectrum measurer configured to adjust reflectance of a reference material so an intensity of a reflection spectrum of the reference material is not saturated, and measure the reflection spectrum of the reference material, using the spectroscope having the adjusted parameter, a first reference spectrum calculator configured to, in response to the adjusted reflectance of the reference material not being one hundred percent, calculate a first reference spectrum based on the measured reflection spectrum of the reference material, and a second reference spectrum measurer configured to measure a second reference spectrum of the reference material, using the spectroscope having the adjusted parameter, when a light source of the spectroscope is turned off.
Abstract:
A freshness estimation method includes obtaining an absorbance spectrum that is obtained by irradiating an eye of a fish with light having all or part of a wavelength band from 315 nm to 450 nm; and estimating freshness of the fish by using a shape of the obtained absorbance spectrum.
Abstract:
An illumination device is provided with a light source, a photodetector, and a support structure. The light source, which emits light, has light distribution in which a reference axis serves as an axis of symmetry or light distribution in which a plane including the reference axis serves as a plane of symmetry. A first light beam in the light is guided to the object to be illuminated. A second light beam in the light is guided to the photodetector. The photodetector detects intensity of the second light beam. The light source and the photodetector are supported by the support structure in positions and postures that allow the first light beam and the second light beam to be guided in an aforementioned manner. A traveling direction of the first light beam and a traveling direction of the second light beam make the same angle with the reference axis.
Abstract:
Various implementations of an apparatus for sensing one or more parameters are disclosed herein. The apparatus includes a sweeping wavelength laser configured to generate a sweeping wavelength optical signal; an optical fiber including a Fiber Bragg Grating (FBG) structure configured to sense a parameter, wherein the optical fiber is configured to receive the sweeping wavelength optical signal, wherein the FBG structure is configured to produce a reflected optical signal with a particular wavelength in response to the sweeping wavelength optical signal, and wherein the particular wavelength varies as a function of the parameter; a photo detector configured to generate an electrical signal based on the reflected optical signal; a comparator configured to generate a pulse based on a comparison of the electrical signal to a threshold; and a processor configured to generate an indication of the parameter based on the pulse. The comparator may be configured as a Schmitt trigger.
Abstract:
The present invention concerns a system and method for identifying and implementing a correction to spectrometer measurements in order to compensate for errors in the measurement values due to second order diffracted light. The present invention in one configuration, measures light reflectance percentages across the same wavelength range for at least one calibration target. From these measurements the portion of the reflectance values resulting from second order diffracted light is identified and corrected for, thereby generating a compensated measurement of the reflectance values of a sample. These compensated values are then provided to a user.
Abstract:
A mercury detection system that includes a flow cell having a mercury sensor, a light source and a light detector is provided. The mercury sensor includes a transparent substrate and a submonolayer of mercury absorbing nanoparticles, e.g., gold nanoparticles, on a surface of the substrate. Methods of determining whether mercury is present in a sample using the mercury sensors are also provided. The subject mercury detection systems and methods find use in a variety of different applications, including mercury detecting applications.