Abstract:
The present invention relates to an apparatus for detecting photons according to an atmospheric condition, using a function of adjusting light quantity that can significantly improve reliability of an atmospheric condition analysis result by minimizing noise in a spectrum by maintaining the quantity of incident light uniform within a predetermined range regardless of atmospheric conditions and changes, and to a method of adjusting light quantity. The apparatus for detecting photons in accordance with atmospheric conditions using a function of adjusting light quantity includes: an apparatus case having a light inlet; a light quantity adjuster disposed under the light inlet and adjusting quantity of incident light such that a predetermined quantity of light travels inside; and a controller controlling operation of the light quantity adjuster in accordance with intensity of light detected by the light quantity adjuster.
Abstract:
An apparatus and method for testing material to determine if the materials have exceeding their useable life based an analysis of the chemical degradation of the material. An infrared (IR) spectroscopic measurement is made of the material. The measurement results are compared to a database of previously obtained measurement results. Depending on the comparison of the measurement result to the database of previously obtained measurement results, an indication of a measure of the lifespan of the chemically reactive material is determined and provided.
Abstract:
A system and method for non-destructive, in situ, positive material identification of a pipe selects three test areas that are separated axially and circumferentially from one another and then polishes a portion of each test area. Within each polished area, a non-destructive test device is used to collect mechanical property data and another non-destructive test device is used to collect chemical property data. An overall mean for the mechanical property data, and for the chemical property data, is calculated using at least two data collection runs. The means are compared to a known material standard to determine, at a high level of confidence, ultimate yield strength and ultimate tensile strength within +/−10%, a carbon percentage within +/−25%, and a manganese percentage within +/−20% of a known material standard.
Abstract:
Embodiments of the present disclosure include an optical probe capable of communicating identification information to a patient monitor in addition to signals indicative of intensities of light after attenuation by body tissue. The identification information may indicate operating wavelengths of light sources, indicate a type of probe, such as, for example, that the probe is an adult probe, a pediatric probe, a neonatal probe, a disposable probe, a reusable probe, or the like. The information could also be utilized for security purposes, such as, for example, to ensure that the probe is configured properly for the oximeter, to indicate that the probe is from an authorized supplier, or the like. In one preferred embodiment, coding resistors could be provided across the light sources to allow additional information about the probe to be coded without added leads. However, any device could be used without it being used in parallel.
Abstract:
An optical system comprising an optical instrument and a processing unit. The optical instrument may comprise an illumination source and a sensor. The processing unit may comprise a data storage having stored thereon a characterization of the illumination source and a characterization of the sensor. The processing unit may also comprise a computer configured to calculate a system response of the illumination source and the receiving element considering the characterization of the illumination source and the characterization of the receiving element.
Abstract:
Embodiments of the present disclosure include an oximeter sensor system including a reusable portion including a substantially rigid connector connected to an end of a cable. The substantially rigid connector includes an electronic element housing at least one electronic component of a probe. The system also includes a disposable portion including a flexible wrap comprising a substantially rigid connection port shaped to receive the substantially rigid connector in a releasably securable manner.
Abstract:
Microplate reader (21) with a computer for controlling the components of said microplate reader (21), comprising a light source (15) for emitting light for irradiating samples (22) or transmitting light through samples (22), and a filter slide (1) situated in the excitation or detection beam path. The microplate reader (21) in accordance with the invention is characterized in that said filter slide (1) comprises an electronic memory (4) for recording and/or retrieving filter-specific data, with said filter-specific data comprising the number and intensity of the light flashes impinging upon a certain filter (2) of said filter slide (1) and/or the intensity and duration of all exposures performed, and that said filter slide (1) comprises a contact point (5,7) jointly with the microplate reader (21) for transmitting such filter-specific data from the computer to the electronic memory (4) of the filter slide (1) and for retrieving such filter-specific data with the computer. According to the method in accordance with the invention for acquiring filter-specific data in a filter slide (1) of such a microplate reader (21), filter-specific data which comprise the number and intensity of the light flashes impinging upon a specific filter (2) of said filter slide (1) and/or the intensity and duration of all exposures performed are transmitted by the computer via a contact point common to said filter slide (1) and the microplate reader (21) to an electronic memory (4) of said filter slide (1) and/or are retrieved with the computer from said electronic memory (4).
Abstract:
A spectrometry instrument with exchangeable accessories (34, 48, 50, 52) providing, for example, different sample presentation facilities. The accessories include a manually operable cam-lock facility (54, 68) for quick and easy attachment of an accessory to the instrument. The instrument also includes an electrical circuit (86-90), which is completed by a circuit portion (100) in an accessory when the accessory is attached to the instrument, for generating a unique identifying voltage (94) to thereby identify that accessory. This allows for automatic loading in a controlling computer of programs for setting up and running the instrument for measurement regimes using that accessory. The spectrometry instrument is preferably a spectrophotometer used for phosphorescence decay measurements in which sequential phosphorescence emission measurements data from each of a number of excitation cycles applied to a sample are taken and then reassembled into a correct time sequence to define a phosphorescence decay characteristic for the sample, that is, measured data points from a second (and subsequent) excitation cycle are interleaved with those from a first excitation cycle. This significantly reduces the time for establishing a phosphorescence decay characteristic.
Abstract:
A spectrometry instrument, e.g., for time-resolved spectroscopy, has quick-change exchangeable accessories (48, 50, 52) which are manually attached via rotation of a camming means to engage and lock a stud member. A circuit element in each accessory (48, 50, 52), such as a resistor or a configured pin connection, acts to generate a voltage in the instrument that uniquely identifies which accessory is attached. A method for measuring a phosphorescence decay characteristic includes applying an excitation pulse to a sample (34); obtaining emission intensity data for a sequence of time delays following the excitation pulse; repeating for at least one further excitation pulse using a different sequence of time delays; and interleaving the data from different excitation pulses to construct a decay characteristic.
Abstract:
The method and apparatus of the present invention provides a system wherein light-emitting diodes (LEDs) can be tuned within a given range by selecting their operating drive current in order to obtain a precise wavelength. The present invention further provides a manner in which to calibrate and utilize an LED probe, such that the shift in wavelength for a known change in drive current is a known quantity. In general, the principle of wavelength shift for current drive changes for LEDs is utilized in order to allow better calibration and added flexibility in the use of LED sensors, particularly in applications when the precise wavelength is needed in order to obtain accurate measurements. The present invention also provides a system in which it is not necessary to know precise wavelengths of LEDs where precise wavelengths were needed in the past. Finally, the present invention provides a method and apparatus for determining the operating wavelength of a light emitting element such as a light emitting diode.