Abstract:
Spectroscopic chemical analysis methods and apparatus are disclosed which employ deep ultraviolet (e.g. in the 200 nm to 300 nm spectral range) electron beam pumped wide bandgap semiconductor lasers, incoherent wide bandgap semiconductor light emitting devices, and hollow cathode metal ion lasers to perform non-contact, non-invasive detection of unknown chemical analytes. These deep ultraviolet sources enable dramatic size, weight and power consumption reductions of chemical analysis instruments. In some embodiments, Raman spectroscopic detection methods and apparatus use ultra-narrow-band angle tuning filters, acousto-optic tuning filters, and temperature tuned filters to enable ultra-miniature analyzers for chemical identification. In some embodiments Raman analysis is conducted along with photoluminescence spectroscopy (i.e. fluorescence and/or phosphorescence spectroscopy) to provide high levels of sensitivity and specificity in the same instrument.
Abstract:
Methods and systems for reconstructing individual spectra acquired from laser interrogation spots in a 2D array illuminating a particle are described. A particle is positioned in a 2D array that includes multiple laser interrogation spots. The laser interrogation spots of the particle are detected in the 2D array using a spectrometer. Multifocal spectral patterns are generated based on the laser interrogation spots, and an individual spectrum for each laser interrogation spot is reconstructed based on the plurality of multifocal spectral patterns.
Abstract:
Methods and configurations are disclosed for an efficient collection of fluorescence emitted by the nitrogen vacancies of a diamond of a DNV sensor. Some implementations may include a diamond having a nitrogen vacancy and a reflector positioned about the diamond to reflect a portion of light emitted from the diamond. In some implementations the reflector may be parabolic or ellipsoidal. In some implementations, DNV sensor may have a reflector and a concentrator. Other implementations may include a diamond with a nitrogen vacancy and a reflector positioned about the diamond to reflect a portion of light emitted from the diamond using a dielectric mirror film applied to the reflector. Still other implementations may have a diamond with a nitrogen vacancy and a dielectric mirror film coated on the diamond.
Abstract:
A plural color broadband coherent anti-Stokes Raman scattering (CARS) microscope includes: a first light source to produce a first light including a narrowband radiation; a second light source to produce a second light including a broadband radiation; a third light source to: receive the first light from the first light source; receive the second light from the second light source; and produce a third light comprising the narrowband radiation and the broadband radiation by combining the first light and the second light such that the first light and second light are spatially overlapped and temporally overlapped; and a primary objective to: receive the third light from the third light source; communicate the third light to a sample; and subject the sample to simultaneous interpulse CARS stimulation and intrapulse CARS stimulation by irradiation with the narrowband radiation and the broadband radiation in the third light.
Abstract:
A measuring apparatus includes an illumination device including a surface light source, a detector configured to detect a light intensity distribution formed on a light-receiving surface by reflected light, and a processor configured to obtain the reflection characteristic based on first data of the light intensity distribution detected by the detector. The processor is configured to estimate, based on the first data, second data of a light intensity distribution formed by specular reflected light and third data of a light intensity distribution formed by diffuse reflected light in a case where a point light source is disposed at each position in a light-emitting region of the surface light source, and to estimate, based on the second data and the third data, a light intensity distribution formed by reflected light from the surface.
Abstract:
An optical apparatus for Raman scattering microscopy, includes a laser source (10) suitable for emitting a laser beam (11) at an excitation wavelength λ, a microscope objective (14) suitable for receiving the laser beam (11) and focusing the laser beam in an image plane of the microscope objective (14), the focused laser beam (21) being intended to illuminate a sample (20), an optical system suitable for collecting a Raman scattering optical beam (22), and detection elements (16, 17) suitable for detecting the Raman scattering beam (22) collected. More particularly, the Raman scattering microscopy apparatus further includes an adaptive optics system (31, 32, 33) positioned on an optical path of the excitation laser beam (11), on an optical path of the Raman scattering beam (22) or on an optical path common to the excitation laser beam (11) and the Raman scattering beam (22).
Abstract:
Systems, apparatus and methods determine the presence of a volatile substance in expired breath. Alcohol concentrations can be determined from expired breath through the use of electromagnetic detection. The systems, apparatus and methods allow measurements of volatile substances to be done accurately and quickly over a wide range of temperatures, and are easily incorporated into vehicles.
Abstract:
To increase the illumination efficiency by facilitating the change of the incident angle of illumination light with a narrow illumination width according to an inspection object and enabling an illumination region to be effectively irradiated with light, provided is a defect inspection method for obliquely irradiating a sample mounted on a table that is moving continuously in one direction with illumination light, collecting scattered light from the sample obliquely irradiated with the illumination light, detecting an image of the surface of the sample formed by the scattered light, processing a signal obtained by detecting the image formed by the scattered light, and extracting a defect candidate, wherein the oblique irradiation of the light is implemented by linearly collecting light emitted from a light source, and obliquely projecting the collected light onto the surface of the sample, thereby illuminating a linear region on the surface of the sample.
Abstract:
An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
Abstract:
Methods and systems for detecting defects on a wafer are provided. One system includes one or more computer subsystems configured for generating a rendered image based on information for a design printed on the wafer. The rendered image is a simulation of an image generated by the optical inspection subsystem for the design printed on the wafer. The computer subsystem(s) are also configured for comparing the rendered image to an optical image of the wafer generated by the optical inspection subsystem. The design is printed on the wafer using a reticle. In addition, the computer subsystem(s) are configured for detecting defects on the wafer based on results of the comparing.