Abstract:
The invention is directed to a manipulator for an optical apparatus including a particle-optical apparatus. The manipulator is especially a diaphragm or specimen manipulator in an electron microscope. The component (4), which is to manipulated, is accommodated by a transfer body (2) movable relative to a spatially-fixed component (1) and the transfer body (2) includes a composite material having a high thermal conductivity while simultaneously having a vanishing or negative thermal expansion coefficient in the direction of the connecting axis (B—B) between the component (4) and the spatially-fixed component (1).
Abstract:
A method and calibration standard for fabricating on a single substrate a series of crystalline pairs such that the d-spacing difference between the pairs will generate Moire fringes of the correct spacings to optimally calibrate the magnification settings of an electron microscope over a variety of magnification settings in the range of 5000× to 200,000×. The invention enables the tailoring of Moire fringe spacings to a desired magnification setting for calibration purposes by fabricating a series of patterns on a single substrate whereby each magnification setting is easily calibrated using a specific SGOI structure that is selected by a simple x-y translation across the top plan surface of the SGOI structure, therein eliminating the need for removing calibration samples in and out of the electron microscope. The method and calibration standard may be used for calibrating electron microscopes, such as, scanning transmission electron microscopes and transmission electron microscopes.
Abstract:
A Wien filter is provided in which a less amount of secondary aberration is produced than conventional. This filter has 12 poles. These poles have front ends facing the optical axis. These front ends have a 12-fold rotational symmetry about the optical axis within the XY-plane perpendicular to the optical axis.
Abstract:
An inspection system (100) for inspecting a mask (101) to determine if the mask (101) has at least one desired transparent area (902) organized in a desired transparent pattern (908) and at least one desired opaque area (900) organized in a desired opaque pattern (906). The mask (101) includes an actual mask pattern (103C) having at least one actual transparent area (103A) and at least one actual opaque area (103B). In one embodiment, the inspection system can include a beamlet supply assembly (111) that (i) directs a shaped beamlet towards one of the actual areas (103A, 103B) of the mask (101), and/or (ii) directs a plurality of beamlets simultaneously towards the mask (101).
Abstract:
An electron microscopy grid, includes: (i) a perforated substrate, (ii) a support film on the perforated substrate, the support film having a thickness of 60 Å or less, and (iii) linkers attached on top of the support film. The linkers has at least one affinity group for immobilizing an analyte; wherein the linkers form a non-random pattern on the support film.
Abstract:
Aspects of the disclosure provide a method of tilting characterization. The method includes measuring a first tilting shift of structures based on a first disposition of the structures. The structures are formed in a vertical direction on a horizontal plane of a product. A second tilting shift of the structures is measured based on a second disposition of the structures. The second disposition is a horizontal flip of the first disposition. A corrected tilting shift is determined based on the first tilting shift and the second tilting shift.
Abstract:
Charged particle optical devices, systems, and methods are provided. A charged particle optical device can include a dispersing element disposed substantially on a beam axis, the dispersing element being configured to disperse particles of a beam of charged particles by energy in a dispersal plane parallel with the beam axis. The charged particle optical device can include a selector, disposed on the beam axis at a position substantially corresponding to a first crossover plane. The charged particle optical device can include an undispersing element. The charged particle optical device can include a cutoff disposed on the beam axis downstream of the selector at a position substantially corresponding to a second crossover plane on the beam axis. The second crossover plane can be downstream of the first crossover plane. The cutoff can include a material that is opaque to electrons and defining an aperture substantially aligned with the beam axis.
Abstract:
Systems, methods, and components of charged particle microscopes affording improved contrast in dose sensitive samples are described. A pole piece for an electron microscope can include a body, being substantially concentric with a central axis. The body can define an upper surface, substantially normal to the central axis, a lower surface, substantially normal to the central axis, a central aperture formed in the body from the upper surface to the lower surface. The central aperture can be substantially rotationally symmetrical about the central axis. The body can define a lateral surface, inclined relative to the central axis and tapering toward the upper surface and a plurality of lateral apertures formed in the body from the lateral surface to the central aperture. The plurality of lateral apertures can be arrayed substantially symmetrically about the central axis.
Abstract:
A system and method of a tilt-column electron beam imaging system is disclosed. The system may include an imaging sub-system. The imaging sub-system may include a plurality of electron beam sources configured to generate a plurality of beamlets. The imaging sub-system may further include a plurality of tilt-illumination columns, where a respective tilt-illumination column is configured to receive a respective beamlet from a respective electron beam source. For the system and method, a first tilt axis of a first tilt-illumination column may be orientated along a first angle and at least one additional tilt axis of at least one additional tilt-illumination column may be orientated along at least one additional angle different from the first angle, where each of the plurality of beam lets pass through a first common crossover volume.
Abstract:
A method of automated data acquisition for a transmission electron microscope, the method comprising: obtaining a reference image of a sample at a first magnification; for each of a first plurality of target locations identified in the reference image: steering an electron beam of the transmission electron microscope to the target location, obtaining a calibration image of the sample at a second magnification greater than the first magnification, and using image processing techniques to identify an apparent shift between an expected position of the target location in the calibration image and an observed position of the target location in the calibration image, training a non-linear model using the first plurality of target locations and the corresponding apparent shifts; based on the non-linear model, calculating a calibrated target location for a next target location; steering the electron beam to the calibrated target location and obtaining an image at a third magnification greater than the first magnification.