Abstract:
An apparatus and methods for small-angle electron beam scattering measurements in a reflection or a backscattering mode are provided. The apparatus includes an electron source, electron collimation optics before a sample, electron projection optics after the sample, a sample stage capable of holding the sample, and a electron detector module. The electrons emitted from the source are collimated and positioned to impinge nanostructures on the sample. The signals resulting from the interactions between the impinging electrons and the nanostructures are further magnified by the electron projection optics to reach a sufficient angular resolution before recorded by the electron detector module.
Abstract:
The present invention relates to a lens-less Foucault method wherein a transmission electron microscope objective lens (5) is turned off, an electron beam crossover (11, 13) is matched with a selected area aperture (65), and the focal distance of a first imaging lens (61) can be changed to enable switching between a sample image observation mode and a sample diffraction pattern observation mode, characterized in that a deflector (81) is disposed in a stage following the first imaging lens (61), and conditions for an irradiating optical system (4) can be fixed after conditions for the imaging optical system have been determined. This allows a lens-less Foucault method to be implemented in a common general-use transmission electron microscope with no magnetic shielding lens equipped, without burdening the operator.
Abstract:
An aberration computing device (100) includes a fitting section (48) for fitting line profiles of a diffractogram taken in radial directions to a fitting function and finding fitting parameters of the fitting function and a computing section (49) for finding at least one of an amount of defocus and two-fold astigmatism, based on the fitting parameters.
Abstract:
Provided is a phase plate for use in an electron microscope which lessens the problem of image information loss caused by interruption of an electron beam and ameliorates the problem of anisotropic potential distributions. This phase plate comprises openings (23) connected into a single opening, and multiple electrodes (11) arranged in the opening from the outer portion of the opening towards the center of the opening. The cross sections of the electrodes (11) are configured such that a voltage application layer (24) comprising a conductor or a semiconductor is covered by a shield layer comprising a conductor or a semiconductor with an intermediate insulating layer. By this means, this phase plate is capable of lessening electron beam interruption due to the electrodes (11), and of ameliorating the problem of anisotropic potential distributions.
Abstract:
Provided is a phase plate for use in an electron microscope which lessens the problem of image information loss caused by interruption of an electron beam and ameliorates the problem of anisotropic potential distributions. This phase plate comprises openings (23) connected into a single opening, and multiple electrodes (11) arranged in the opening from the outer portion of the opening towards the center of the opening. The cross sections of the electrodes (11) are configured such that a voltage application layer (24) comprising a conductor or a semiconductor is covered by a shield layer comprising a conductor or a semiconductor with an intermediate insulating layer. By this means, this phase plate is capable of lessening electron beam interruption due to the electrodes (11), and of ameliorating the problem of anisotropic potential distributions.
Abstract:
In an interference electron microscope, a first electron biprism is disposed between an acceleration tube and an illumination-lens system, a mask is disposed between the acceleration tube and the first electron biprism, and the first electron biprism is arranged in a shadow that the mask forms. Current densities of first and second electron beams on a parabolic surface of an objective lens system where a sample is positioned are controlled by a control system by an optical action of the illumination-lens system, the mask is imaged on the parabolic surface of the objective lens system, and an electro-optical length between the first electron biprism and the parabolic surface of the objective lens where the sample is positioned is controlled without generating Fresnel fringes on a sample surface from the mask and the first electron biprism.
Abstract:
An electron beam device includes a first electron biprism between an acceleration tube and irradiation lens systems, and an electron biprism in the image forming lens system. The first electron biprism splits the electron beam into first and second electron beams, radiated to differently positioned first and second regions on an objective plane of an objective lens system having a specimen perpendicular to an optical axis. The first and second electron beams are superposed on the observation plane by the electron biprism of the image forming lens system. The superposed region is observed or recorded. Optical action of the irradiation lens system controls each current density of the first and second electron beams on the objective plane having the specimen, and distance on electron optics between the first electron biprism and the objective plane of the objective lens system having the specimen.
Abstract:
The invention relates to a method of preparing and imaging a sample using a particle-optical apparatus, equipped with an electron column and an ion beam column, a camera system, a manipulator. The method comprises the steps of deriving a first ptychographic image of the sample from a first electron image, thinning the sample, and forming a second ptychographic image of the sample. In an embodiment of the invention the seed image used for the second image is the first ptychographic image. In another embodiment the second ptychographic image is the image of the layer removed during the thinning. In another embodiment the inner potential of the sample is determined and dopant concentrations are determined.
Abstract:
An apparatus and method for generating femtosecond electron beam are disclosed. The apparatus for generating electron beam by discharging an electron generated via a cathode to an anode includes a transmission window provided at one side of the cathode to allow incident laser to pass therethrough, a pinhole formed on the anode such that the pinhole corresponds to the position of the electron generated from the transmission window, and a focusing unit provided at one side of the cathode and generating an electric field to accelerate and at the same time concentrate the electron to the pinhole. Electrons are simultaneously concentrated and accelerated to the pinhole by an electric field generated by the focusing unit positioned at the cathode to generate femtosecond electron beam.
Abstract:
A first electron biprism is disposed in a condenser optical system and an observation region of a specimen is irradiated simultaneously with two electron beams of different angles. The two electron beams that have simultaneously transmitted the specimen are spatially separated and focused with a second electron biprism disposed in an imaging optical system and two electron microscopic images of different irradiation angles are obtained. The two picture images are obtained by a detecting unit. Based on the two picture images, a stereoscopic image or two images having different kinds of information of the specimen is/are produced and displayed on a display device.