Abstract:
An analytical device for analysing ions is provided comprising a separator for separating ions according to a physico-chemical property and an interface comprising one or more ion guides. A quadrupole rod set mass filter is arranged downstream of the interface. A control system is arranged and adapted: (i) to transmit a first group of ions which emerges from the separator through the interface with a first transit time t1; and (ii) to transmit a second group of ions which subsequently emerges from the separator through the interface with a second different transit time t2.
Abstract:
An electrostatic trap such as an orbitrap is disclosed, with an electrode structure. An electrostatic trapping field of the form U′(r, φ, z) is generated to trap ions within the trap so that they undergo isochronous oscillations. The trapping field U′(r, φ, z) is the result of a perturbation W to an ideal field U(r, φ, z) which, for example, is hyperlogarithmic in the case of an orbitrap. The perturbation W may be introduced in various ways, such as by distorting the geometry of the trap so that it no longer follows an equipotential of the ideal field U(r, φ, z), or by adding a distortion field (either electric or magnetic). The magnitude of the perturbation is such that at least some of the trapped ions have an absolute phase spread of more than zero but less than 2 π radians over an ion detection period Tm.
Abstract:
A method for analyzing ions according to their mass-to-charge ratio and mass spectrometer for performing the method, comprising directing a collimated ion beam along an ion path from an ion source to an ion detector, causing a portion of the ion beam to contact one or more surfaces prior to reaching the ion detector, wherein the method comprises providing a coating on and/or heating the one or more surfaces to reduce variation in their surface patch potentials. The method is applicable to multi-reflection time-of-flight (MR TOF) mass spectrometry.
Abstract:
A method, apparatus, and computer-readable storage medium are provided for analyzing data from a component separation/mass spectrometer (CS-MS), wherein an intensity peak is determined, with an area thereof determined using an integration procedure, in each two-dimensional data set. The intensity peak indicates a sample component, and the area thereof indicates a relative quantity of the sample component. An integration procedure determines the area of selected peaks of a first portion of the two-dimensional data sets associated with a first sample component, and is applied to the intensity peaks of a second portion having the areas thereof not determined by that integration procedure, to adjust the relative quantity of the first sample component in the second portion samples relative to the relative quantity of the first sample component in the first portion samples. The re-integration may also involve determining whether a second sample component is indicated by the intensity peak.
Abstract:
Methods and devices for detecting a target substance on a subject without contacting the subject are disclosed. At least one air jet blows analyte from a surface of the subject into an airflow, the airflow entraining the analyte. A desorption channel desorbs molecules from analyte in a portion of the airflow travelling through the desorption channel. An ionizer forms ions from vapour molecules in the portion of the airflow. At least one mass spectrometer analyzes the ions to detect the target substance. The airflow travels without interruption from the subject to the at least one mass spectrometer. The desorption channel causes a sufficient quantity of molecules to desorb from the analyte to enable the at least one mass spectrometer to detect the target substance.
Abstract:
An electrode structure for an ion drift tube and an ion drift tube with the electrode structure are disclosed. The electrode structure comprises an annular electrode. The annular electrode has an inner edge bent towards one side such that a section of a central portion of the annular electrode has a swallowtail shape. With the ion drift detection instrument, ions in a drift state can travel along focusing electric lines of force, and since the high-voltage intervals between the electrodes are increased at a uniform acceleration, the generated electric field enables the ions to be in a uniformly accelerated drift state so that both the sensitivity and resolution of the mobility spectrum of the detection instrument can reach optimum.
Abstract:
A mass spectrometry data display device in which the mass axis (m/z axis) is made into a ring shape and the intensity axis is the radial direction thereof, and peak information (in the drawing, the compound name and structural formula candidates) are arranged in a ring shape in correspondence with the peaks along the outer circumference of the mass spectrum and displayed together therewith on a screen.
Abstract:
Certain embodiments described herein are directed to time of flight tubes comprising a cylindrical tube comprising an inner surface and an outer surface, the cylindrical tube comprising an effective thickness and sized and arranged to couple to and support a reflectron assembly inside the cylindrical tube. In some configurations, the cylindrical tube further comprises a conductive material disposed on the inner surface of the cylindrical tube, the conductive material present in an effective amount to provide a field free region for ions when the conductive material is charged.
Abstract:
An electrode structure for an ion drift tube and an ion drift tube with the electrode structure are disclosed. The electrode structure comprises an annular electrode. The annular electrode has an inner edge bent towards one side such that a section of a central portion of the annular electrode has a swallowtail shape. With the ion drift detection instrument, ions in a drift state can travel along focusing electric lines of force, and since the high-voltage intervals between the electrodes are increased at a uniform acceleration, the generated electric field enables the ions to be in a uniformly accelerated drift state so that both the sensitivity and resolution of the mobility spectrum of the detection instrument can reach optimum.
Abstract:
A preamplifier is provided for correction of overshoot or undershoot effects present in a signal received from a charged particle detection electrode. The preamplifier is ground-isolated from the charged particle detection electrode and comprises: a main amplification stage, configured to receive and amplify the isolated signal; a feed-forward stage, configured to generate a compensation signal from the amplified ground-isolated signal, the compensation signal being generated to mirror the overshoot or undershoot effects; and an output, arranged to provide an output signal that is a combination of the amplified ground-isolated signal and the compensation signal. A charged particle detection arrangement comprising the preamplifier is also provided.