Abstract:
An insulating thick film composition for forming a solder resist layer having a high degree of positional accuracy is provided, which can suppress warping and undulation of a multilayer ceramic substrate and can maintain the superior electrical characteristics thereof. The insulating thick film composition is primarily composed of a powdered ceramic having the same composition system as that of a powdered ceramic contained in a green ceramic sheet, and the mean particle diameter of the powdered ceramic of the insulating thick film composition is smaller than that of the powdered ceramic contained in the green ceramic body.
Abstract:
An encapsulated electronic component having an integral heat diffuser. The heat producing electronic component (10) is mounted on a substrate carrier (12) and a layer of encapsulant material (16) covers the component. A layer of thermally conductive material (18) is applied over the encapsulant material, and then a second layer of encapsulant material (20) is applied over the thermally conductive material. The heat generated by the component is distributed throughout the thermally conductive material, thereby eliminating the hot spot over the component, resulting in a substantially lower surface temperature.
Abstract:
A thick film resistive element superior in moisture resistance characteristic is provided, which includes a pair of film-like conductors formed on an insulating substrate, a film-like resistor formed on the substrate so as to be partially laminated on the electrode portions of the pair of conductors thereby covering the surfaces of the electrode portions, and a first covering member formed of a material containing a crystal glass as a main ingredient thereof which covers the other portions of the pair of conductors than said electrode portions. As a result, there does not exist such an area that is covered with a porous amorphous glass film only, so that even if a protection film of an organic resin is not provided, there is no possibility that the moisture in the application environment affects on the conductors to degrade the insulation resistance therebetween. Thus, the use of this thick film resistive element makes it possible to realize a thick film printed circuit board and thick film hybrid integrated circuit device with no need to coat a protection film of an organic resin.
Abstract:
A ceramic substrate supports a thin or thick film electronic circuit hermetically enclosed by a vitreous glass covering sealed to the ceramic substrate by a heat fused vitreous sealing glass. The vitreous sealing glass is screened onto the vitreous glass covering in a composition comprising a binder material and a liquifier. The electronic circuit is trimmed by a laser beam directed through the vitreous glass covering as one of the final process steps after completion of those process steps which tend to affect the resistivity of the resistive element; process steps such as high temperature baking and soldering of component parts.
Abstract:
The invention relates to a method of forming a thick-film circuit arrangement having an electronic circuit which is constructed on a surface (17) of a ceramic substrate plate (3) and which consists of conductor paths (5), resistors, capacitors and components, in particular integrated switching circuits without a housing, formed according to thick-film technique, in this structure has between the electrically conductive structures (5) a sintered, non-conductive paste substantially filling the intermediate spaces between them and both the structures and the interposed pastes are covered by a sintered insulating paste. For concealing the thick-film circuit arrangement from unauthorized access, the following covering construction is carried out:1. the paste in the intermediate spaces fills the same between the electronically active thick-film conductor structures in such a manner that the tops of the electrically active structures and the insulating filling layer (7) formed from an insulating paste and filling the intermediate spaces between them are situated substantially in one plane, andthe insulating paste is provided over the combined conductor/filling layer (11) in a covering and smoothing manner to form at least one insulating first thick-film anti-access layer (13) which, by additional observation-impeding inclusions (dye, particles), impedes an optical recognition of the underlying structures, especially when the first thick-film anti-access layer or layers is or are not succeeded by further anit-access layers.
Abstract:
Disclosed is a method of forming an electrically conductive circuit comprising the steps of: preparing a transferring paper in which an assembly of electrically conductive foil carrying a predetermined pattern and an insulating layer containing glass frit and an overcoat layer consisting of a resin film having good burning property are provided on a transferring paper covered with a paste layer; removing an integral structure of the conductive foil, the insulating layer, and the overcoat layer from the transferring paper; transferring the removed integral structure onto a substrate; and burning the substrate with the integral structure set thereon at a temperature where the glass is soften. According to this method, it is possible to eliminate transformation or damage of a conductive foil where a conductive foil is singly disposed on a substrate.
Abstract:
Improved thick-film overglaze inks useful in constructing multilayer integrated circuits on circuit boards, particularly porcelain-coated metal circuit boards, are provided. The subject inks comprise: a glass consisting of lead oxide, a modifier component consisting of the oxides of cadmium, zinc, barium and antimony and a glass-forming component consisting of aluminum oxide, boron trioxide and silicon dioxide; a suitable organic vehicle and, if desired, a colorant oxide.
Abstract:
A ternary barrier structure and method for forming the structure to be used on a conductive electrode. In electronic structures, dielectric substrates are used which have a plurality of connecting conductive areas which are wettable by solder. The region surrounding these connecting conductive areas are not wettable by solder. Barrier structures are used to prevent the flow of the solder while the solder is liquid during the manufacture of these electronic products. The present barrier structure covers at least a portion of one of these connecting conductive electrodes wherein the electrode is composed predominantly of silver and a lesser quantity of one or more of the platinum metals. The barrier structure includes a gold bearing, non-wettable by solder, glaseous layer over a portion of the electrode. The portion of the conductive electrode under and adjacent to the barrier glasseous layer contains a gold-silver alloy which is produced during the formation of the barrier structure by diffusion of the gold from the glasseous layer into the conductive electrode. A particularly corrosion resistant barrier structure and conductive electrode combination is thereby produced at this rather critical point in the microminiature circuit structure.
Abstract:
A layer circuit arranged to receive semiconductor modules by soldering, the circuit having at least one conductor path extending therealong with a solder platform at one end of the conductor path. A layer is positioned transversely across the conductor path beyond the solder platform but extends across the conductor path less than the width of the path. This layer is incapable of tinning so that it separates the solder platform at the end of the conductor path from the remainder of the path by a relatively narrow constriction.
Abstract:
A method of manufacturing a constituent for a component carrier is disclosed. The method includes providing an electrically conductive structure, forming a highly thermally conductive and electrically insulating or semiconductive structure on the electrically conductive structure, and subsequently, attaching a thermally conductive and electrically insulating structure, having a lower thermal conductivity than the highly thermally conductive and electrically insulating or semiconductive structure, on an exposed surface of the highly thermally conductive and electrically insulating or semiconductive structure.