Abstract:
A technique is presented for minimizing crosstalk between adjacent differential signal pairs in communications. A backplane embodiment wherein the backplane includes a plurality of differential signal line pairs, is presented. A first differential signal line pair can include a first differential signal line and a second differential signal line. The backplane can have the first differential signal line connected between first and second vias. The second differential signal line can be connected between third and fourth vias. A third signal line can be connected between fifth and sixth vias. The first via can be spatially adjacent to the fifth via such that a signal on the third signal line is coupled to the first differential signal line and the fourth via can be spatially located adjacent to the sixth via such that a signal on the third signal line is coupled to the second differential signal line.
Abstract:
In the case where high speed differential signals are transmitted in differential transmission lines through via holes with open-stubs, signal waveforms are distorted due to impedance mismatch in the open-stubs of the via holes, thus causing jitter, which has become an issue of high speed signals. For differential transmission lines that pass through via holes with open-stubs, a degree of coupling of the lines is decreased while the differential characteristic impedance is made constant. Thereby, the effects of backward cross talk noise caused by the coupling can be minimized, and thus jitter can be suppressed.
Abstract:
According to some embodiments, a connector to receive a memory module includes a first row of a first plurality of interconnect ends, a second row of a second plurality of interconnect ends adjacent to the first row, and a third row of a third plurality of interconnect ends adjacent to the second row. An interconnect end of the first plurality of interconnect ends, an interconnect end of the second plurality of interconnect ends, and an interconnect end of the third plurality of interconnect ends may be substantially aligned.
Abstract:
A novel backplane routing and configuration (200) supports a full mesh architecture. In this novel configuration, a circuit pack determines which backplane signals to use for a transmission based on the relative distance across the backplane between the board sending the communication and the board receiving the communication. Boards sending the same relative distance use the same rows of signals (204). That is, each row associated with the meshed interconnection is assigned a relative shift or distance for a connection. The rows (204) that represent a greater relative distance for shift between boards are intermixed next to rows (204) that have a relatively short distance between shifts or boards. In this manner, the number of layers required is minimized and the utilization of routing channels is optimized. In particular, for a N slot backplane with one routing channel between rows, (N/2+1) layers are required, rather than N layers. And, vertical routing is not required.
Abstract:
A device (20) for interconnecting electrical bundles, includes a plurality of pluggable connection and cross-connect cards (34 to 38) for the electrical bundles. The device further includes a “main” printed circuit (28, 28b) fitted with connectors or slots (29 to 33) designed and arranged to receive the pluggable cards, the printed circuit having a plurality of parallel tracks (46), each enabling two tracks (61 to 63, 68) or tracks starters (70 to 72) provided respectively on two distinct pluggable cards plugged in the connectors of the main printed circuit to be put to the same potential, each of the parallel tracks (46) being in contact with a respective pin (50, 150) of a plurality of connectors of the main printed circuit.
Abstract:
A system and method are disclosed in which flex cables are affixed to PCBs, for providing high-speed signaling paths between ICs disposed upon the PCBs. The flex cables are fixably attached to the PCBs so as to substantially mimic their structural orientation. Where the configuration includes more than one PCB, the flex cables include multiple portions which are temporarily separable from one another and from the die, using flex-to-flex and flex-to-package connectors, allowing field maintenance of the configuration. By routing the high-speed signals between ICs onto the flex cable, single-layer PCBs can be used for non-critical and power delivery signals, at substantial cost savings. By disposing the flex cables onto the PCB rather than allowing the cables to float freely, the configuration is thermally managed as if the signals were on the PCB and cable routing problems are avoided.
Abstract:
An Advanced Mezzanine Card (AMC) adapter may be used to connect a non-AMC mezzanine card to an AMC carrier. The AMC adapter may include a card edge connector configured to be connected to an AMC connector on the AMC carrier and one or more mezzanine connectors configured to be connected to the non-AMC mezzanine card. The AMC adapter may also include a bridge to convert between communication protocols used by the non-AMC mezzanine card and the AMC carrier. Of course, many alternatives, variations, and modification are possible without departing from this embodiment.
Abstract:
A high-speed router backplane is disclosed. The disclosed construction and layout techniques enable the construction of a reliable, high-layer-count, and economical backplane for routers and the like that use signaling across the backplane at trace speeds of 2.5 Gbps or greater. Specific ranges of differential trace geometry characteristics, with significant single-ended coupling to adjacent ground planes, have been found to provide the parameters needed for such signaling. New trace routing and layering techniques also help in the realization of a backplane embodiment containing roughly 600 operable high-speed differential pairs, while also providing sufficient electromagnetic interference management to allow power distribution to occur within the same backplane.
Abstract:
A high frequency bus system which insures uniform arrival times of high-fidelity signals to the devices on the high frequency bus, despite the use of the bus on modules and connectors. A high frequency bus system includes a first bus segment having one or more devices connected between a first and a second end. The first bus segment has at least a pair of transmission lines for propagating high frequency signals and the devices are coupled to the pair of transmission lines. The high frequency bus system also includes a second bus segment which has no devices connected to it. The second bus segment also has at least a pair of transmission lines for propagating high frequency signals. The first end of the first segment and second end of the second segment are coupled in series to form a chain of segments and when two signals are introduced to the first end of the second bus segment at the substantially the same time, they arrive at each device connected to the first bus segment at substantially the same time. Also, when two signals originate at a device connected to the first bus segment at substantially the same time, they arrive at the first end of the second bus segment at substantially the same time. Uniform arrival times hold despite the use of connectors to couple the segments together, despite the segments being located on modules, without the need for stubs, despite the presence of routing turns in the segments and despite the type of information, such as address, data or control, carried by the signals.
Abstract:
A mid-plane is disclosed. The mid-plane includes a first printed circuit board having a plurality of plated vias adapted to receive tails attached to a first connector and having a plurality of unplated clearance holes adapted to receive tails attached to a second connector. The second printed circuit board has a plurality of plated vias adapted to receive tails attached to the second connector and has a plurality of unplated clearance adapted to receive tails attached to the first connector.