Abstract:
A rechargeable battery pack includes a plurality of battery cells, a connection tab electrically coupled to one or more terminals of the battery cells, a connection plate electrically coupled to the connection tab, and having an opening for accommodating a protruding portion of the connection tab, and a protective circuit module electrically coupled to the connection plate, and having a combination groove, wherein the connection plate is on a first surface of the protective circuit module to face the combination groove, and wherein the first surface of the protective circuit module faces the connection tab.
Abstract:
An electronic component includes: an electronic component body; and a lead secured to the electric component and including a projection portion defined by first and second inclined portions facing each other. The solder wettability of the first inclined portion is smaller than the solder wettability of the second inclined portion.
Abstract:
A semiconductor device includes wiring boards each having an insulating board, conductor circuits and through-holes, the insulating board having top and bottom surfaces, the conductor circuits formed on the top and bottom surfaces, the through holes penetrating the insulating board and electrically connecting the conductor circuits of the top and bottom surfaces; conductor posts each having flange, head and leg portions, the flange portion having first and second surfaces and having an external diameter larger than that of the through-hole, the head portion protruding from the first surface, the leg portion protruding from the second surface; and electronic components each having an electrode formed on one or more surfaces and connected to the leg portion. The head portion is inserted until the first surface of the flange portion comes into contact with the bottom surface of the wiring board and electrically connected at an inner wall of the through-hole.
Abstract:
In a ceramic capacitor, first and second electrode terminals each include a bonded-to-substrate portion, a first bonded-to-electrode portion bonded to a first edge of one of first and second external electrodes, a second bonded-to-electrode portion bonded to a second edge of the one of first and second external electrodes and disposed at a distance from the first bonded-to-electrode portion in the first directions, and a connecting portion connecting the first and second bonded-to-electrode portions and the bonded-to-substrate portion. W1/W0 is about 0.3 or more, and h/L is about 0.1 or more.
Abstract:
A wiring substrate includes a silicon substrate, a through hole formed to penetrate the silicon substrate in a thickness direction, an insulating layer formed on both surfaces and side surfaces of the silicon substrate and an inner surface of the through hole, a penetration electrode formed in the through hole, a wiring layer formed on at least one surface of the silicon substrate and connected to the penetration electrode, and a metal wire terminal connected to the wiring layer and formed to extend from one surface of the silicon substrate to a side surface thereof. The metal wire terminal on the side surface of the electronic device is connected to the mounting substrate such that a substrate direction of the electronic device in which an electronic component is mounted on the wiring substrate intersects orthogonally with a substrate direction of the mounting substrate.
Abstract:
An electrical connection device and assembly method thereof includes a substrate with a plurality of contacting portions arranged on a surface thereof; a chip module having a plurality of terminals inclining in one direction and compressed and contacted with the contacting portions correspondingly; at least one restricting structure which restricts the chip module to move a distance relative to the substrate depending on the compression deformation of the terminals when the terminals are contacted with the contacting portions; and at least one elastic element just producing deformation when the chip module moves the distance. When the terminals are compressed and contacted with the contacting portions, the restricting structure restricts the chip module to move the distance depending on the compression deformation of the terminals, so that the elastic element just produces deformation, which make the chip module only move in the direction opposite to the deformation direction of the terminals.
Abstract:
The present invention relates generally to permanent interconnections between electronic devices, such as integrated circuit packages, chips, wafers and printed circuit boards or substrates, or similar electronic devices. More particularly it relates to high-density electronic devices.The invention describes means and methods that can be used to counteract the undesirable effects of thermal cycling, shock and vibrations and severe environment conditions in general.For leaded devices, the leads are oriented to face the thermal center of the devices and the system they interact with.For leadless devices, the mounting elements are treated or prepared to control the migration of solder along the length of the elements, to ensure that those elements retain their desired flexibility.
Abstract:
An adaptor for connecting ball grid array components to a circuit board with a leaded grid array joint, utilizing electric leads which can connect to a ball grid array on one end and a leaded grid array pad pattern on the opposite end.
Abstract:
A method of fabricating a package-on-package (POP) package is disclosed. The method includes preparing a first semiconductor package including a first substrate having external contact electrodes and a first semiconductor chip mounted on the first substrate, and preparing a second semiconductor package including a second substrate having external contact electrodes and a second semiconductor chip mounted on the second substrate. The method further includes forming lead lines in the second semiconductor package, the lead lines being electrically connected to the external contact electrodes of the second substrate, and stacking the second semiconductor package on the first semiconductor package and electrically connecting the external contact electrodes of the first substrate to the external contact electrodes of the second substrate using the lead lines.
Abstract:
A package-on-package (POP) package in which semiconductor packages are stacked using lead lines rather than conventional solder balls, and a fabricating method thereof are provided. According to the POP package and the fabricating method thereof of the present invention, the POP package is prevented from being short-circuited even when an underlying semiconductor package gets thicker and the POP package can sufficiently withstand deformation caused by post-fabrication warpage.