Abstract:
A method and apparatus for determining a presence, color and/or brightness of a plurality of components in a printed circuit board, where the components are biased either with constant current or with a current pulse.
Abstract:
A computing device and a method detect a lightness of a lighting device. The computing device captures an image of the lighting device and parses the image to obtain a pixel gray value of each lighting dot of the lighting device. The computing device obtains detection information of the lighting device according to the pixel gray value of each lighting dot of the lighting device. The computing device generates a detection report of the lighting device according to the detection information of the lighting device.
Abstract:
A safety control system includes: a first control unit arranged to control a controlled system, a second control unit arranged to detect a fault with the controlled system and arranged to transmit messages wirelessly to the first control unit, wherein the second control unit includes: a first controller and a second controller, each of the first and second controllers being arranged to detect a condition of the controlled system and output messages indicative of whether or not the condition has been detected; a transmitter arranged to transmit wirelessly to the first control unit; and a multiplexer arranged to connect each of the first and second controllers in turn to the transmitter so that messages from each of the first and second controllers can be transmitted to the first control unit.
Abstract:
Online calibration of laser performance as a function of the repetition rate at which the laser is operated is disclosed. The calibration can be periodic and carried out during a scheduled during a non-exposure period. Various criteria can be used to automatically select the repetition rates that result in reliable in-spec performance. The reliable values of repetition rates are then made available to the scanner as allowed values and the laser/scanner system is then permitted to use those allowed repetition rates.
Abstract:
A system in accordance with the present disclosure comprises a sensor and an information processing apparatus that includes processing circuitry. The sensor is installed on a surface so that a detection direction of the sensor is at a non-zero angle from a line normal to the surface. The processing circuitry is configured to communicate with the sensor, calculate a position of a detection area, in which the sensor detects an object in a predetermined space, according to the non-zero angle and a location of the sensor on the surface, and create correspondence information that associates an area of the predetermined space with the detection area.
Abstract:
An optical sensor and optical system are disclosed. The optical sensor is disclosed to include a light source, a photodetector having a proximity sensing portion and an ambient light sensing portion, and a controller configured to implement a proximity sensing phase where the proximity sensing portion of the photodetector is utilized to obtain an incident light reading when the light source is ON and then implement an ambient light sensing phase where the ambient light sensing portion of the photodetector is utilized to obtain an incident light reading when the light source is OFF.
Abstract:
A two dimensional scanning laser system may automatically detect a laser, then align and calibrate itself to scan over the sensor area. The system may have a laser with a controller that may cause the laser to be directed over two dimensions, as well as a sensor apparatus. The laser may be controlled with a mirror system that may pivot in two directions, thus allowing the laser to be scanned over a two dimensional area. The sensor may be a point sensor, where the laser may be positioned in a constant direction, as well as a larger area sensor where the laser may be moved across the sensor area to detect objects in a two or three dimensional space. An alignment and calibration sequence may cause the laser to scan across its operational area and detect the location of one or more sensors.
Abstract:
A method of detecting a defect light sensor, includes the operations of:—collecting data, comprising collecting light sensor data;—performing a preparation procedure on the collected data in order to determine a template; and—performing a detection procedure for determining a light sensor status. The operation of performing a preparation procedure includes determining a template of the behavior of the light sensor data collected during a time period constituting a part of a day with well-defined conditions The operation of performing a detection procedure includes the operations of:—collecting light sensor data for several further days during the corresponding time period;—selecting representative days thereof;—determining a corresponding behavior for each selected day; and—comparing the corresponding behavior with the template to detect any defect of the light sensor.
Abstract:
Various embodiments include systems and methods to provide selectable variable gain to signals in measurements using incident radiation. The selectable variable gain may be used to normalize signals modulated in measurements using incident radiation. The selectable variable gain may be attained using a number of different techniques or various combinations of these techniques. These techniques may include modulating a modulator having modulating elements in which at least one modulating element acts on incident radiation differently from another modulating element of the modulator, modulating the use of electronic components in electronic circuitry of a detector, modulating a source of radiation or combinations thereof. Additional apparatus, systems, and methods are disclosed.
Abstract:
Disclosed is a controlling apparatus for a dimming level of a light disposed on a ceiling surface, including: a sampling unit sampling an illumination value of a ceiling area depending on a change in a dimming level of the light; a communication unit receiving an illumination value of a floor area at a minimum dimming level of the light and an illumination value of the floor area at a maximum dimming level of the light; an estimation unit estimating an illumination value of the floor area at a current dimming level of the light based on an algorithm defined by using the illumination value of the floor area and the illumination value of the ceiling area at the minimum dimming level of the light, the illumination value of the floor area and the illumination value of the ceiling area at the maximum dimming level of the light, and the illumination value of the ceiling area at the current dimming level of the light; and a control unit controlling the dimming level of the light so that the estimated illumination value of the floor area and a target illumination value coincide with each other.