Abstract:
A common aperture, multi-mode optical imager for imaging electromagnetic radiation bands from a field of two or more different wavelengths is described. Fore-optics are provided to gather and direct electromagnetic radiation bands forming an image into an aperture of the multi-mode optical imager. The image is divided into two different wavelength bands, such as visible light and long-wave infrared. The first wavelength band (e.g., visible light) is detected by a first detector, such as a CCD array, for imaging thereof. The second wavelength band (e.g., long-wave infrared) is detected by a second detector, such as an uncooled microbolometer array, for imaging thereof. Additional optics may be provided for conditioning of the first and second wavelength bands, such as such as for changing the magnification, providing cold shielding, filtering, and/or further spectral separation.
Abstract:
Method and apparatus for analyzing radiation using analyzers and encoders employing the spatial modulation of radiation dispersed by wavelength or imaged along a line.
Abstract:
The present invention is directed to apparatus and method for measuring the spectral characteristics of an object surface. The apparatus comprises a light source for generating an input signal comprising a plurality of wavelengths of energy and a diffraction grating for diffracting the input signal into a plurality of diffracted wavelengths of energy. A resonant mirror assembly associated with the diffraction grating sequentially directs a select diffracted wavelength to the object surface to generate a corresponding reflected wavelength of energy. The apparatus further comprises a sensor for determining each select diffracted wavelength of energy directed to the object surface and a detector for detecting one or more of the reflected wavelengths. The detector is coupled with the sensor for associating each select diffracted wavelength with each corresponding reflected wavelength.
Abstract:
An auto-tracking spectrophotometer has a moveable look-ahead sensor for scanning at least a portion of a color matrix. The look-ahead sensor finds a portion of the color matrix for measurement by an optical system. The optical system for measuring the color matrix is then guided using the information provided by the look-ahead sensor.
Abstract:
A disc serving as a spatial radiation modulator has dispersed radiation filters thereon. Each filter has a transmittance or reflectance modulation function of the form sin2(mθ+pπ/4), where m is a positive integer and p has one of the four values 0, 1, 2, 3. A radiation beam including selected wavelength components is diffracted into an elongated image dispersed according to wavelength. Different wavelength components are focused onto different filters on the modulator and are encoded by corresponding filters. Since the modulation functions of the filters are orthogonal to one another, it is possible to extract the amplitude of each wavelength component after it has been encoded or modulated by corresponding filter from the total detected signal during one measurement.
Abstract translation:用作空间辐射调制器的盘在其上具有分散的辐射滤波器。 每个滤光器具有形式为sinθ2(mta + ppi / 4)的透射率或反射调制函数,其中m是正整数,p具有四个值0,1,2,3中的一个 包括所选择的波长分量的辐射束被衍射成根据波长分散的细长图像。 不同的波长分量聚焦在调制器上的不同滤波器上,并由相应的滤波器编码。 由于滤波器的调制功能彼此正交,因此可以在一次测量期间从总检测信号对相应的滤波器进行编码或调制之后提取每个波长分量的振幅。
Abstract:
An LED-based color measurement instrument including an illumination system and a sensing system. The illumination system includes modulated LEDs and a temperature control system for regulating the temperature of the LEDs, thereby improving the consistency of their performance. The sensing system includes a photodiode, a transimpedance amplifier, and an integrator in the first stage to cancel the effect of ambient light on the output of the first stage. The sensing system also includes a lens system for imaging a target area of the target sample onto the photo sensor in a manner so that the product of the target area times the solid angle captured by the lens system is generally uniform over a selected range of distances, thereby reducing the positional sensitivity of the instrument with respect to the target sample.
Abstract:
Methods and apparatus for contemporaneous measurements of electromagnetic radiation with multiple measuring devices, for producing a high diagnostic sensitivity image while achieving high diagnostic specificity with spectroscopy, for producing illumination for fluorescence/NIR reflectance imaging and white light reflectance imaging, all with the same sensors are disclosed. The method may involve selectively adjusting a gain of an imaging device in at least one wavelength band relative to a gain in at least one other band to produce an optimized image of an object, and may also involve producing a first reflectance signal in a first NIR wavelength band, and producing a second reflectance signal in a second NIR band such that an absorption coefficient ratio of oxyhemoglobin to deoxyhemoglobin in the second wavelength band differs from that in the first wavelength band, to permit the first and second reflectance signals to be used to produce a tissue oxygenation image.
Abstract:
A device for the photoelectric measuring of an opaque or transparent object to be measured includes a photoelectric sensor (4) and a measuring optics (3) which directs measuring light originating from a measurement field of the object to be measured (6) onto the sensor (4). A control electronic (5) cooperates with the sensor (4) for the processing of the electrical signals produced by the sensor. The sensor (4) includes at least two individually controlled and concentrically arranged partial sensors (41, 42, 43), and the control electronics (5) includes switching means (51) by which the partial sensors (41, 42, 43) can be selectively switched on or off-line. The use of a photoelectric sensor made of or divided into several partial sensors enables a purely electronic and therefore simple and fast selection of different effective measurement field sizes.
Abstract:
A system and method for optical alignment of a color imaging system includes illuminating a target plate with a laser beam. Photo-luminescent energy from the target plate is emitted in response to the laser beam. A color imaging system is aligned based on the photo-luminescent energy emitted at the target plate.
Abstract:
A hand-held material identification apparatus 10 uses a spectrograph and detector array detecting a Raman spectrum produced by a sample illuminated by a laser source to recognize a variety of materials with a command to recognition time cycle of about one second or less. The width of the spectrum detected by each detector in the array is less than ¼th the excitation source wavelength deviation to permit smoothing of the spectrum detected by the discrete spectral elements to eliminate pixel noise without loss of Raman spectral information. The Raman spectra are produced by materials illuminated by an inexpensive near-infrared multimode laser operated in a pulse mode to deliver between 0.05 and 0.5 joules of photon energy, with the Raman spectra being detected before any significant heating of the sample occurs. The identification apparatus 10 qualitatively determines the chemical composition of reinforced and unreinforced copolymers and composites such as ABS, polypropylene, talc-filled polypropylene, polycarbonate, PMMA, polyethylene, and PVC, from samples of different colors and textures with a high degree of success without the need for special positioning or sample preparation.