Abstract:
A compact imaging spectrometer comprises an entrance slit, a catadioptric lens with a mirrored surface, a grating, and a detector array. The entrance slit directs light to the mirrored surface of the catadioptric lens; the mirrored surface reflects the light back through the lens to the grating. The grating receives the light from the catadioptric lens and diffracts the light to the lens away from the mirrored surface. The lens transmits the light and focuses it onto the detector array.
Abstract:
A method for determining a calibration function includes: calculating a first distance, between a distribution of target spectra and a comparison distribution of spectra; calibrating the distribution of target spectra with a first preliminary calibration function to form a first distribution of calibrated target spectra; calculating a second distance, between the first distribution of calibrated target spectra and the comparison distribution of spectra; determining that the second distance is less than the first distance; and setting the calibration function equal to the first preliminary calibration function.
Abstract:
Various embodiments disclosed herein describe a divided-aperture infrared spectral imaging (DAISI) system that is adapted to acquire multiple IR images of a scene with a single-shot (also referred to as a snapshot). The plurality of acquired images having different wavelength compositions that are obtained generally simultaneously. The system includes at least two optical channels that are spatially and spectrally different from one another. Each of the at least two optical channels are configured to transfer IR radiation incident on the optical system towards an optical FPA unit comprising at least two detector arrays disposed in the focal plane of two corresponding focusing lenses. The system further comprises at least one temperature reference source or surface that is used to dynamically calibrate the two detector arrays and compensate for a temperature difference between the two detector arrays.
Abstract:
A method and device (10) for making a calibrated measurement of light from an object (E). In a first measurement window (W1), object light (LE) is received from the object (E) onto a beam splitter (11) which splits the light into a signal path (Ps) and a reference path (Pr). A first signal (S1=T·LE·Hs) is measured by a signal detection element (15s) in the signal path (Ps). A second signal (S2=R·LE·Hr) is measured by a reference detection element (15r) in the reference path (Pr). In a second measurement window (W2), calibration light (LC) is received onto the beam splitter (11). A third signal (S3=R·LC·Hs) is measured by the signal detection element (15s) in the signal path (Ps). A fourth signal (S4=T·LC·Hr) is measured by the reference detection element (15r) in the reference path (Pr). A measurement value of the object light (LE) is determined based on the measured signals (S1,S2,S3,S4).
Abstract:
This application relates to a device for measuring a transmittance curve of an Fabry-Perot using a frequency comb light source and a method using the same. The device includes the following components sequentially arranged in an optical path: a single frequency pulse laser generating single frequency pulse laser; a frequency comb laser converting received single frequency pulse laser into frequency comb laser; and an Fabry-Perot to be detected receiving laser output from the frequency comb laser; where the device further includes a first receiving unit receiving laser from an output end of the frequency comb laser and performing component and spectrum analysis, and a second receiving unit receiving laser from an output end of the Fabry-Perot to be detected and performing component and spectrum analysis.
Abstract:
Aspects relate to a spectral modeling system for building chemometrics (calibration) models for spectral devices targeting ultra-wide-scale deployment. The spectral modeling system includes a spectral converter for generating a plurality of artificial spectra using spectral data of a plurality of samples measured by a subset of a plurality of spectral devices and spectral device characteristics representing spectral variations in the plurality of spectral devices. The spectral modeling system further includes a chemometrics engine for generating a chemometrics model for one or more parameters associated with the plurality of samples based on the spectral data and the plurality of artificial spectra.
Abstract:
A method is performed for scheduling a calibration relating to an optical device in a light source. The method can be performed by a calibration system including a calibration apparatus and a prediction controller. The method includes: receiving a property associated with the optical device while the optical device is being calibrated; calculating a current degradation metric based at least on the optical device property, the degradation metric modeling behavior of the optical device; estimating when a degradation of the optical device would exceed a threshold based on the current degradation metric; and scheduling a calibration of the optical device based at least in part on the estimate of optical device degradation.
Abstract:
Aspects of the present disclosure provide a method for wavelength calibration of a spectrometer. The method can include receiving a calibration light signal having first spectral components of different first wavelengths; separating and projecting the first spectral components onto pixels of a detector of the spectrometer; establishing a relation between the first wavelengths and pixel numbers of first pixels on which the first spectral components are projected; calculating first residual errors between the first wavelengths and estimated wavelengths that are associated by the relation to the pixel numbers of the first pixels; receiving an optical signal having a second spectral component of a second wavelength; projecting the optical signal onto a second pixel; and calibrating the second wavelength based on a second residual error calculated based on one of the first residual errors that corresponds to a pair of the first pixels between which the second pixel is located.
Abstract:
Spectrometers and methods for determining the presence or absence of a material in proximity to and/or combined with another material are provided. In one particular example, a spectrometer is provided that includes a light source, a detector and an optical system. In this implementation, the light source is configured to provide an excitation incident beam. The detector is configured to detect a spectroscopy signal. The optical system is configured to direct the excitation incident beam toward a sample at a non-zero angle from a zero-angle reference. The optical system is further configured to receive a spectroscopy signal from the sample and provide the spectroscopy signal to the detector. The detector is configured to remove a spectral interference component of the spectroscopy signal.
Abstract:
A reference imaging system including a planar reference piece. The reference imaging system further includes a three-axis gantry for positioning the planar reference piece at a plurality of points in a 3D coordinate system. Additionally, the reference imaging system includes a yaw actuator for adjusting the yaw angle of the object. Furthermore, the reference imaging system includes a pitch actuator for adjusting the pitch of the object. Moreover, the reference imaging system includes a computer processing unit for controlling the 3D position, pitch and yaw of the planar reference piece.