Abstract:
This disclosure relates generally to a sampling device, and more particularly, a sampling device that facilitates spectroscopic measurements with a variable path length and the necessary software controlled algorithms and methods for such a device.
Abstract:
In order to solve a problem that a local optical characteristic-changed region inside an object cannot be accurately estimated, an object observing apparatus includes: a light intensity information acquiring unit that acquires light intensity information received by each light-receiving probe; a light intensity change information acquiring unit that acquires, for each probe set, light intensity change information, from reference light intensity information and light intensity information; an estimating unit that acquires three-dimensional optical characteristic-changed region information, using the light intensity change information; and an output unit that outputs the optical characteristic-changed region information; wherein the estimating unit includes: a correcting part that performs correction according to sensitivity attenuation in accordance with a depth; and a sparseness applying part that introduces sparseness for improving a space resolution, thereby acquiring the optical characteristic-changed region information. Accordingly, it is possible to accurately estimate a local optical characteristic-changed region inside an object.
Abstract:
A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
Abstract:
The present invention reagents and methods for setting up an instruments having a multiplicity of detector channels for analyzing a multiplicity of fluorescent dyes. The present invention is particularly applicable in the field of flow cytometry.
Abstract:
A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.
Abstract:
This disclosure relates generally to a sampling device, and more particularly, a sampling device that facilitates spectroscopic measurements with a variable path length and the necessary software controlled algorithms and methods for such a device.
Abstract:
A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
Abstract:
A system and method for characterizing contributions to signal noise associated with charge-coupled devices adapted for use in biological analysis. Dark current contribution, readout offset contribution, photo response non-uniformity, and spurious charge contribution can be determined by the methods of the present teachings and used for signal correction by systems of the present teachings.
Abstract:
The invention provides a method and apparatus for detecting minority gaseous species in a mixture by light-emission spectroscopy by means of an optical spectrometer (8), in which the radiation emitted by a plasma (4) present in the gas mixture for analysis is used and, in the spectrum of said radiation, lines are identified of a majority gaseous species that present amplitudes that are sensitive to the presence of a minority species, and information about the concentration of a minority gaseous species is deduced from the amplitude(s) of said sensitive line(s). This makes it possible to monitor minority gaseous species in real time.
Abstract:
Methods for characterizing spillover spreading originating from a first fluorochrome in fluorescent flow cytometer data collected for a second fluorochrome are provided. In some embodiments, methods include partitioning the fluorescent flow cytometer data according to the intensity of the data relative to the first fluorochrome. In embodiments, methods also include estimating with a first linear regression a zero-adjusted standard deviation for the intensity of light collected from the second fluorochrome for each of the partitioned quantiles based on the assumption that the intensity of light collected from the first fluorochrome is zero, and obtaining with a second linear regression a spillover spreading coefficient from the zero-adjusted standard deviations. Systems and computer-readable media for characterizing spillover spreading originating from a first fluorochrome in fluorescent flow cytometer data collected for a second fluorochrome are also provided.