Abstract:
A photosensitive glass paste contains a photosensitive organic component and an inorganic component containing a glass powder having a high softening point, a glass powder having a low softening point, and a ceramic filler. The ceramic filler has a thermal expansion coefficient of 10×10−6/° C. to 16×10−6/° C., the inorganic component contains 30% to 50% by volume of the ceramic filler, and the inorganic component contains 0.5% to 10% by volume of the glass powder having a low softening point.
Abstract:
A wiring board for a fingerprint sensor includes a core insulating layer having a thickness of 30 μm to 100 μm, an inner buildup insulating layer having a thickness of 17 μm to 35 μm, an outer buildup insulating layer having a thickness of 7 μm to 25 μm, a plurality of fingerprint reading outer strip-shaped electrodes, a plurality of fingerprint reading inner strip-shaped electrodes, and an upper solder resist layer covering the outer strip-shaped electrodes by a thickness of 3 μm to 15 μm.
Abstract:
A multilayer ceramic substrate that includes a laminate having stacked ceramic layers formed of a ceramic material containing a main component, containing 48 to 75% by weight of Si, 20 to 40% by weight of Ba, and 10 to 40% by weight of Al, and an auxiliary component containing at least 2.5 to 20 parts by weight of Mn with respect to 100 parts by weight of the main component, and in the laminate, glass ceramic layers in which the entire or a portion of the thickness thereof exists within 100 μm inside of the laminate as measured from opposed principal surfaces are further stacked.
Abstract:
Provided is a printed circuit board, including: a core substrate including an internal circuit pattern on an upper surface or a lower surface; electronic devices which are formed to pass through the core substrate; an external insulating layer which covers the internal circuit pattern and the electronic devices; and an external circuit pattern which is formed on an upper surface of the external insulating layer, wherein a lower surface of the electronic devices protrudes from the lower surface of the core substrate to a lower part. Accordingly, in the embedded printed circuit board in which the electronic devices are embedded, when the electronic devices are mounted, because the insulating layer is formed regardless of a thickness of the electronic devices, the printed circuit board having a desired thickness regardless of the thickness of the electronic devices can be formed.
Abstract:
Flexible LED assemblies (300) are described. More particularly, flexible LED (320) assemblies having flexible substrates (302) with conductive features (304, 306) positioned on or in the substrate, and layers of ceramic (310) positioned over exposed portions of the substrate to protect against UV degradation, as well as methods of making such assembles, are described.
Abstract:
A ceramic substrate composite includes a conductor pattern composite and an insulating layer on a ceramic substrate. The ceramic substrate composite is formed such that the conductor pattern composite and the insulating layer are provided on the ceramic substrate with each other so that the insulating layer overlaps a part of the conductor pattern composite. The conductor pattern composite is composed of a conductor portion and an insulating portion that exists locally in the conductor portion, and the insulating portion is an insulating material that constitutes the insulating layer.
Abstract:
The present invention provides an LED array module having an improved heat-dissipating effect, and a manufacturing method thereof. To this end, an LED array module includes one or more LED unit modules, the LED unit module comprising: an LED; a heat conductive heat-dissipating slug attached to the lower portion of the LED; and leads connected to the cathode and anode of the LED, respectively, wherein the LED array module comprises: a heat-dissipating plate; a heat conductive solder layer disposed and bonded between the upper surface of the heat-dissipating plate and the lower surface of the heat-dissipating slug; a first insulating layer formed on the upper surface of the heat-dissipating plate; and array electrodes which are formed on the upper surface of the insulating layer and are electrically connected to the leads to drive the LED.
Abstract:
A method of fabricating a capacitance touch panel module includes forming a plurality of first conductive patterns on a substrate comprising a touching area and a peripheral area along a first orientation, a plurality of second conductive patterns along a second orientation, and a plurality of connecting portions in the touching area; forming a plurality of insulated protrusions, in which each insulated protrusion covering one connecting portion, and forming an insulated frame on the peripheral area; and forming a bridging member on each insulated protrusion.
Abstract:
A method of fabricating a capacitance touch panel module includes forming a plurality of first conductive patterns on a substrate comprising a touching area and a peripheral area along a first orientation, a plurality of second conductive patterns along a second orientation, and a plurality of connecting portions in the touching area; forming a plurality of insulated protrusions, in which each insulated protrusion covering one connecting portion, and forming an insulated frame on the peripheral area; and forming a bridging member on each insulated protrusion.
Abstract:
In a first aspect of the present invention, a lighting device including a metal plate, an electrical insulation layer that is smaller in size than an outline of the metal plate and arranged on an upper surface of the metal plate, a light-emitting element mounted on the electrical insulation layer, and a first connecting electrode and a second connecting electrode electrically connected to the light-emitting element and arranged on the electrical insulation layer.