Abstract:
For a multi-terminal semiconductor package, such as a BGA or a CSP, that handles high-speed differential signals, a high-speed signal is assigned to the innermost located electrode pad on an interposer substrate, and the electrode pad is connected to the outermost located ball pad on the interposer substrate. With this arrangement, the length of a plating stub can be considerably reduced, and the adverse affect on a signal waveform can be minimized. This arrangement is especially effective for differential signal lines.
Abstract:
An interconnect includes a pad and at least two vias coupled to the pad. In one embodiment, the pad has five substantially straight edges, one via directly coupled to the pad by being formed substantially beneath the pad, and one via coupled to one of the five substantially straight edges by a tapered conductive segment. In another embodiment, the pad has three vias directly coupled to the pad and formed substantially beneath the pad. A method of forming an interconnect includes forming at least two vias in a substrate and coupling a pad to each of the at least two vias.
Abstract:
A high frequency semiconductor apparatus is provided which prevents characteristics of a high frequency semiconductor element from being deteriorated so that the high frequency semiconductor element can be made to operate stably. The high frequency semiconductor apparatus is so configured that heat generated by a high frequency semiconductor element is sequentially conducted through a grounding via hole to a first ground layer, a first via hole, a first ground sublayer, a bonding material layer, a second ground layer, a second via hole, and a third ground layer.
Abstract:
A terminal has a plurality of split solder portions inserted into through-holes in a printed circuit board. A first split solder portion has a cross-sectional shape such that four corners thereof contact an inner circumferential surface of the through hole for positioning, while a second split solder portion has a cross-sectional shape such that the portion is loosely inserted into the through hole without contacting an inner circumferential surface thereof. The plurality of split solder portions of the terminal are inserted into through holes having substantially equal diameters. The four corners of the first split solder portion contact the inner circumferential surface of the through hole for positioning and holding. The second split solder portion does not contact the inner circumferential surface of the through hole. The through holes are filled with solder to fix the split solder portions therein.
Abstract:
A multilayer substrate having a bonding surface is disclosed. One embodiment of the substrate may comprise a bypass capacitor connection pad disposed on the bonding surface. The bypass capacitor connection pad may have a bypass capacitor power pad and a bypass capacitor ground pad. The substrate may also comprise a plurality of power vias routed from the bypass capacitor power pad to a first redistribution layer spaced apart from the bonding surface and a plurality of ground vias routed from the bypass capacitor ground pad to the first redistribution layer. The substrate may further comprise a plurality of power and ground vias routed from the first redistribution layer to a second redistribution layer according to a power and ground via pattern array, wherein the plurality of ground vias are jogged at the first redistribution layer to the plurality of power vias to form the power and ground via pattern array.
Abstract:
According to one embodiment, a circuit board unit includes: a circuit board; and an electronic component that is surface-mounted on the circuit board. The electronic component includes a first electrode at one end and a second electrode at another end of the electronic component. The circuit board includes a plurality of penetrating holes penetrating through the circuit board at a position close to the first electrode and at a position close to the second electrode. The penetrating holes are arranged substantially symmetrically with respect to the electronic component.
Abstract:
In a wiring substrate of the present invention in which a bump of an electronic parts is bonded to a connection pad of a wiring pattern provided on an insulating film by an ultrasonic flip-chip packaging, a via hole into which a via post acting as a strut to support the connection pad upon the ultrasonic flip-chip packaging is filled is arranged in the insulating film under the connection pad.
Abstract:
Provided are a lead frame and a semiconductor package which allows reliable attachment of a small-sized semiconductor chip requiring a large number of leads to a board while providing high heat dissipation capability. The semiconductor package includes leads, each having a top plate extending inward from the outside edge of a frame and a plurality of pillar-shaped portions supporting the top plates, a semiconductor chip attached onto edge portions of the leads, wires connecting the leads with corresponding bonding pad on the semiconductor chip, and a molding material encapsulating the semiconductor chip and the wires and parts of the leads so as to the bottom surfaces of the leads are exposed. Further, some embodiments have a conductive pad exhibiting higher heat dissipation.
Abstract:
The present invention comprises a processed thin film substrate (10) and a method therefore, in order to produce a flexible printed circuit card, having a plurality of microvias going or passing through the thin film substrate and electrically connected along faced-away surfaces, in order to form an electric circuit. A first a number of real nano-tracks are filled with a first material (M1), having good electric properties, for the formation of a first number of, here denominated, first vias (V10, V30, V 50), that a second number of real nano-tracks are filled with a second material (M2), having good electric properties, for the formation of a second number of, here denominated, second vias (V20, V40, V60). The first material (M1) and the second material (M2) of said first and second vias (V10–V60) are chosen having mutually different thermoelectric properties. A material surface-applied to the thin film substrate, coated on both sides (10a, 10b) of the thin film substrate (10), is distributed and/or adapted in order to allow the electrical interconnection of first vias, allocated the first material (M1), with second vias, allocated the second material (M2), and that a first via (V10) included in a series connection and a last via (V60) included in the series connection are serially co-ordinated in order to form an electric thermocouple (100) or other circuit arrangement.
Abstract:
A flexible printed circuit board (FPCB) which prevents a short circuit due to a crack in a bending portion is provided. The FPCB includes an end portion, a bending portion extended from the end portion, and a circuit portion extended from the bending portion. The improved FPCB includes a base film which is flexible and comprises a first via-hole formed adjacent to the end portion and the bending portion and a second via-hole formed adjacent to the bending portion and the circuit portion, a first conductive layer formed on an outer surface of at least the end portion and the bending portion, a cover layer formed on the first conductive layer, a second conductive layer which is formed on an inner surface of the end portion and is electrically connected to the first conductive layer through the first via-hole, and a third conductive layer which is formed on an inner surface of the extension circuit portion and is electrically connected to the first conductive layer through the second via-hole.