Abstract:
A connector has terminals, each having a tip end portion. A wiring board has through holes. A land is provided on the wiring board about each through hole. When the connector is mounted on the wiring board, each terminal is connected to one of the lands with a part of the tip end portion being located in the corresponding through hole. The ratio of the cross-sectional area of each tip end portion to the cross-sectional area of each through hole is at least 0.11 and no more than 0.89. This improves the reliability of the joint portions between the terminals and the wiring board.
Abstract:
An adaptor pin for connection to a printed circuit board includes an elongated electrically conductive pin having an enlarged portion adjacent one end for forming a mechanical interference fit with a hole partially drilled through the circuit board. The pin has an enlarged cross-sectional solder portion intermediate the enlarged portion and the opposite end of the pin so as to limit the extent of penetration of the pin into the hole of the circuit board. The enlarged portion of each pin is electrically connected by soldering to a circuit path on the circuit board. By this arrangement, a rigid mechanical connection between the pin and the circuit board is effected, and thus subsequent reheating of the board for connecting a surface mounted chip to the opposite side of the board will not interfere with the electrical and mechanical connection between the adaptor pin and the circuit board.
Abstract:
An adaptor pin for connection to a printed circuit board includes an elongated electrically conductive pin having an enlarged portion adjacent one end for forming a mechanical interference fit with a hole partially drilled through the circuit board. The pin has an enlarged cross-sectional solder portion intermediate the enlarged portion and the opposite end of the pin so as to limit the extent of penetration of the pin into the hole of the circuit board. The enlarged portion of each pin is electrically connected by soldering to a circuit path on the circuit board. By this arrangement, a rigid mechanical connection between the pin and the circuit board is effected, and thus subsequent reheating of the board for connecting a surface mounted chip to the opposite side of the board will not interfere with the electrical and mechanical connection between the adaptor pin and the circuit board.
Abstract:
An electrical circuit component includes an apertured substrate having a circuit deposited on a surface and further includes a terminal lead seated in the aperture and having laterally extending flanged portions in clamping relationship at opposite sides of the substrate. The inserted portion of the terminal lead is provided with peripheral knurling to define collapsible ridges. The ridges engage the surface of the aperture as a temporary means of aligning the axes of the terminal lead and the aperture prior to upsetting a protruding end portion of the lead for permanent clamping retention of the substrate and the deposited circuitry.
Abstract:
A printed circuit connection board having equally spaced, parallel contact strips on each side extending from the same edge of the board and including two rows of holes in the board which are parallel and extend transversely to said strips, the strips on one side of the board leading to the row holes of nearer said edge of the board and the strips on the other side of the board leading to the holes of the other row and passing between holes of the first named row. Connections between the board and an insertable male conductor plug, separated by an insulating bar, are ensured by metal rods which are relatively short brads in the case of soldered connections between board and plug and relatively long pins in the case of wrapped connections between the same board and plug.
Abstract:
An electrical terminal structure is disclosed which is provided with a flow deposited quantity or band of solder adhered to a selected portion of the terminal and limited from spreading over the surface of the terminal by the presence of a soldernonwettable material adjacent to but not necessarily touching the terminal. A method of mounting the banded electrical terminals in plated apertures provided in a substrate is also disclosed, wherein the solder bands are applied to the terminals according to the above mentioned application technique. A technique of flattening the solder bands, and the resulting terminal structures having flattened solder bands adhered thereto are also disclosed. Flattening of the solder bands facilitates insertion of the banded terminals into the plated apertures by changing the shape of the solder bands and by reducing their structural integrity though the creation of numerous hairline fractures.