Abstract:
A process load lock apparatus is disclosed. The process load lock apparatus includes a load lock chamber adapted to couple between a mainframe section and a factory interface, the load lock chamber including an entry and an exit each having a slit valve, and a load lock process chamber located at a different level than the load lock chamber at the load lock location wherein the load lock process chamber is adapted to carry out a process on a substrate, such as oxide removal or other processes. Systems including the process load lock apparatus and methods of operating the process load lock apparatus are provided. A lift assembly including a containment ring is also disclosed, as are numerous other aspects.
Abstract:
Exemplary semiconductor structures and processing methods may include forming a first portion of a first semiconductor layer characterized by a first etch rate for an etch treatment, forming a second portion of the first semiconductor layer characterized by a second etch rate that is less than the first etch rate for the etch treatment, and forming a third portion of the first semiconductor layer characterized by a third etch rate that is greater than the second etch rate. The processing methods may further include etching an opening through the first semiconductor layer, where the opening has a height and a width, and where the opening is characterized by a variation in the width between a midpoint of the height of the opening and an endpoint of the opening that is less than or about 5 Å.
Abstract:
A system may include a main line for delivering a first gas, and a sensor for measuring a concentration of a precursor in the first gas delivered through the main line. The system may further include first and second sublines for providing fluid access to first and second processing chambers, respectively. The first subline may include a first flow controller for controlling the first gas flowed through the first subline. The second subline may include a second flow controller for controlling the first gas flowed through the second subline. A delivery controller may be configured to control the first and second flow controllers based on the measured concentration of the precursor to deliver a first mixture of the first gas and a second gas and a second mixture of the first and second gases into the first and second semiconductor processing chambers, respectively.
Abstract:
Exemplary methods of treating a chamber may include delivering a cleaning precursor to a remote plasma unit. The methods may include forming a plasma of the cleaning precursor. The methods may include delivering plasma effluents of the cleaning precursor to a processing region of a semiconductor processing chamber. The processing region may be defined by one or more chamber components. The one or more chamber components may include an oxide coating. The methods may include halting delivery of the plasma effluents. The methods may include treating the oxide coating with a hydrogen-containing material delivered to the processing region subsequent halting delivery of the plasma effluents.
Abstract:
Exemplary processing methods may include forming a plasma of a cleaning precursor in a remote region of a semiconductor processing chamber. The methods may include flowing plasma effluents of the cleaning precursor into a processing region of the semiconductor processing chamber. The methods may include contacting a substrate support with the plasma effluents for a first period of time. The methods may include lowering the substrate support from a first position to a second position while continuing to flow plasma effluents of the cleaning precursor. The methods may include cleaning the processing region of the semiconductor processing chamber for a second period of time.
Abstract:
Methods and systems of detection of wafer de-chucking in a semiconductor processing chamber are disclosed. Methods and systems of interdiction are also disclosed to prevent hardware and wafer damage during semiconductor fabrication if and when de-chucking is detected. In one embodiment, a de-chucking detection method is based on measuring change in imaginary impedance of a plasma circuit, along with measuring one or both of reflected RF power and arc count. In another embodiment, a possibility of imminent de-chucking is detected even before complete de-chucking occurs by analyzing the signature change in imaginary impedance.
Abstract:
Embodiments of the present disclosure generally relate to apparatuses for reducing particle contamination on substrates in a plasma processing chamber. In one or more embodiments, an edge ring is provided and includes a top surface, a bottom surface opposite the top surface and extending radially outward, an outer vertical wall extending between and connected to the top surface and the bottom surface, an inner vertical wall opposite the outer vertical wall, an inner lip extending radially inward from the inner vertical wall, and an inner step disposed between and connected to the inner wall and the bottom surface. During processing, the edge ring shifts the high plasma density zone away from the edge area of the substrate to avoid depositing particles on the substrate when the plasma is de-energized.
Abstract:
Exemplary deposition methods may include delivering a silicon-containing precursor and an inert gas to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the inert gas. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-containing material on a substrate disposed within the processing region of the semiconductor processing chamber. The processing region may be maintained free of helium delivery during the deposition method.
Abstract:
A system for modifying the uniformity pattern of a thin film deposited in a plasma processing chamber includes a single radio-frequency (RF) power source that is coupled to multiple points on the discharge electrode of the plasma processing chamber. Positioning of the multiple coupling points, a power distribution between the multiple coupling points, or a combination of both are selected to at least partially compensate for a consistent non-uniformity pattern of thin films produced by the chamber. The power distribution between the multiple coupling points may be produced by an appropriate RF phase difference between the RF power applied at each of the multiple coupling points.
Abstract:
Embodiments of the disclosure relate to articles, coated chamber components and methods of coating chamber components with a protective coating that includes at least one metal fluoride having a formula selected from the group consisting of M1xFw, M1xM2yFw and M1xM2yM3zFw, where at least one of M1, M2, or M3 is magnesium or lanthanum. The protective coating can be deposited by atomic layer deposition, chemical vapor deposition, electron beam ion assisted deposition, or physical vapor deposition.