Abstract:
Apparatus and method for electrostatic charging of a container for an electrostatic coating operation includes a support member for supporting a container during an electrostatic coating operation with the support member comprising a non-metallic conductive material or electrically semiconductive portion that directly contacts a surface of the container. The electrically semiconductive portion comprises non-metallic, resistive or low conductivity material and is coupled to a source of electrical energy such that the container is electrostatically charged to an opposite polarity to offset or reduce electrostatic charge build up produced by the electrostatic coating operation.
Abstract:
An integrated thermodynamic system for enhancing the energy efficiency and operating lifetime by reducing wear of moving parts is provided. The system provides automated means to attract or repel electrically conductive or magnetic lubricants in a dynamic manner. The system, when utilizing advanced lubricants including ionic liquids, poly(ionic) liquids, electrorheological fluids, or expanded fluid; and a control system implementing dynamic algorithms, preferably meets the complex demands of thermodynamic systems, particularly high speed rotating equipment, for obtaining high efficiency that requires low friction and long lifetimes that requires superior wear resistance.
Abstract:
A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a plurality of applicators, each applicator with an ingress opening to receive a liquid, and an egress opening to release the liquid, and a conductor positioned in a conduit of each of the plurality of applicators, the conductor and the conduit having dimensions to cause a surface tension of the liquid to prevent a constant flow of the liquid from the egress opening. Each conductor of the plurality of applicators can be coupled to one of one or more power sources operable to apply a charge to the liquid to overcome the surface tension and form at the egress opening of each applicator a plurality of jet sprays of the liquid applicable on a substrate to form a thin film. Additional embodiments are disclosed.
Abstract:
Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.
Abstract:
A method of electrostatically applying a powder material to a solid dosage form comprises the following steps: applying a bias voltage to generate an electric field between a source (1) of the powder material and the solid dosage form (5); applying an electrostatically charged powder material to the solid dosage form (5), the powder material being driven onto the solid dosage form (5) by the interaction of the electric field with the charged powder material, an the presence of the charged powder material on the solid dosage form serving to build up an electric charge on the solid dosage form (5) and thereby reduce the electric field generated by the bias voltage between the source (1) of powder material and the solid dosage form (5), and continuing the application of the electrostatically charged powder material to the solid dosage form (5) until the electric field between the source (1) of powder material and the solid dosage form is so small that the driving of the powder material by the electric field onto the solid dosage form (5) is substantially terminated.
Abstract:
A powder coating material for use in the electrostatic powder coating of pharmaceutical tablet cores has the following properties: it is pharmaceutically acceptable, it is treatable to form a film coating on the surfaces of the tablet core and it includes composite particles comprising two or more components having different physical and/or chemical properties.
Abstract:
The present invention provides an improved electrostatic coating apparatus that prevents imperfections in coating due to lumps of coating particles falling on the work piece. The electrostatic coating apparatus, which has multiple nozzles that spray electrically charged coating particles, has least one connecting member that connects the nozzles to each other, in such a way that the surface of the opening at the tip of the nozzle is inserted in a smooth interior surface of the connecting member. Although some of the coating particles discharged from the nozzles adhere to the interior surface, because the surface is smooth the coating particles can be prevented from concentrating locally into icicles that might fall onto the work piece.
Abstract:
A powder coating control system comprising a plurality of gun controls associated with a like plurality of powder spray guns. Each of the gun controls stores a plurality of presets spray parameters. Each of the gun controls responds to part identification signals and part position signals to select in real time one of the stored presets of spray parameters and trigger its respective powder spray gun ON and OFF to apply a powder coating to the moving part in accordance with the selected set of spray parameters. The control system further permits a gun purge cycle to be programmed either before or after the powder coating process is executed. The control system automatically initializes and brings each of the gun controls to an operable state on-line with the system control.
Abstract:
The invention provides apparatus for electrostatically coating a pharmaceutical tablet core with powdered coating material. The apparatus comprises a first rotary drum (12) on which a core is held in electrical isolation from its surroundings but at a potential difference to earth by an electrode which contacts the core. The core is carried past a coating station B at which particles of powder having an opposite potential difference to earth are held in a tray (18). The surface of the drum is held at the same potential difference to earth as the powder particles. The powder is attracted to the core, and not to the drum, coating the exposed surface of the core. The drum carries the coated core past a fusing station C at which a heater fuses the powder to form a continuous film coating. The core is then turned and transferred onto a second drum (12null) where the other surface is coated in the same way.
Abstract:
A method of electrostatically applying a powder material to a solid dosage form comprises the following steps: applying a bias voltage to generate an electric field between a source (1) of the powder material and the solid dosage form (5); applying an electrostatically charged powder material to the solid dosage form (5), the powder material being driven onto the solid dosage form (5) by the interaction of the electric field with the charged powder material, an the presence of the charged powder material on the solid dosage form serving to build up an electric charge on the solid dosage form (5) and thereby reduce the electric field generated by the bias voltage between the source (1) of powder material and the solid dosage form (5), and continuing the application of the electrostatically charged powder material to the solid dosage form (5) until the electric field between the source (1) of powder material and the solid dosage form is so small that the driving of the powder material by the electric field onto the solid dosage form (5) is substantially terminated.