Abstract:
Imaging systems, imaging device analysis systems, imaging device analysis methods, and light beam emission methods are described. According to one aspect, an imaging device analysis method includes receiving initial light comprising a plurality of wavelengths of light, filtering some of the wavelengths of the initial light forming a plurality of light beams comprising different wavelengths of light, after the filtering, optically communicating the light beams of the different wavelengths of light to an imaging device, receiving the light beams using the imaging device, and analyzing the imaging device using light, wherein the light beams comprising the different wavelengths of light are emitted beams after the receiving.
Abstract:
A method and apparatus for measuring spectral information of light from at least one object includes at least one light detector and at least one transparent body. The transparent body has a front side that has an entrance aperture and at least one reflecting surface. The transparent body also has a back side that includes at least one reflecting surface and an exit surface. The detector is positioned near the exit surface. At least one of the front reflecting surface and the back reflecting surface includes a diffractive optical element arranged to receive diverging light from the aperture. A focusing element focuses diffracted light to the exit surface. The apparatus may comprise multiple channels and may also include a device for measuring a distance to the object.
Abstract:
A system and method for detecting an endpoint during a chemical mechanical polishing process is disclosed that includes illuminating a first portion of a surface of a wafer with a first broad beam of light. A first reflected spectrum data is received. The first reflected spectrum of data corresponds to a first spectra of light reflected from the first illuminated portion of the surface of the wafer. A second portion of the surface of the wafer with a second broad beam of light. A second reflected spectrum data is received. The second reflected spectrum of data corresponds to a second spectra of light reflected from the second illuminated portion of the surface of the wafer. The first reflected spectrum data is normalized and the second reflected spectrum data is normalized. An endpoint is determined based on a difference between the normalized first spectrum data and the normalized second spectrum data.
Abstract:
A system and method for detecting an endpoint is disclosed that includes illuminating a first portion of a surface of a wafer with a first broad beam of light. A first reflected spectrum data is received. The first reflected spectrum of data corresponds to a first spectra of light reflected from the first illuminated portion of the surface of the wafer. A second portion of the surface of the wafer with a second broad beam of light. A second reflected spectrum data is received. The second reflected spectrum of data corresponds to a second spectra of light reflected from the second illuminated portion of the surface of the wafer. The first reflected spectrum data is normalized and the second reflected spectrum data is normalized. An endpoint is determined based on a difference between the normalized first spectrum data and the normalized second spectrum data.
Abstract:
A self-slitting spectroscope comprising a narrow source along the axis of a hemi-cylindrical transmission grating of very large size to permit simultaneous viewing of spectral phenomena by a large number of observers.
Abstract:
A remote sampling sensor for determining characteristics of a sample includes measurement optics and an insertion probe. The measurement optics are configured to emit light and detect returned light. The insertion probe includes a chamber, the chamber being configured to permit the sample to enter the chamber, an insertion tip at a distal end of the insertion probe, and a retro-reflective optic adjacent the insertion tip. The retro-reflective optic is configured to return the light from the measurement optics through the chamber to the measurement optics. The insertion probe is configured to be remotely located from the measurement optics.
Abstract:
Systems and methods for color selection are provided. A user device displays room types on a display, receives a room type selection indicating a particular room type, displays types of feelings, and receives a type of feeling selection indicating a particular type of feeling. The user device accesses a lookup table that associates the room types and types of feelings with paint colors such that each possible combination of room type and type of feeling is associated with a subset of paint colors. The user device determines the associated subset of paint colors in the lookup table for the combination of the particular room type and the particular type of feeling and displays the associated subset of paint colors as recommended paint colors for the combination of the particular room type and the particular type of feeling on the display of the user device.