Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
The invention relates to an illumination device (1) with a number of light emitters, for example LEDs (L1, L2, L3, L4) of individual emission spectra. Sensor units (D1, D2, D3, D4) can produce a vector of measurement signals (S1, S2, S3, S4) that represent the light output of a single active light emitter. Based on a linear relation obtained during a calibration procedure, a characteristic value of the light output of that light emitter (L1, L2, L3, L4) is then calculated from the measurement vector, wherein said characteristic value is based on the coefficients of a decomposition of the individual emission spectrum into basis functions.
Abstract:
A color sensor array includes a plurality of sensors. Each of the plurality of sensors has a width dimension and a length dimension that is elongated with respect to the width dimension. The length dimensions of the sensors are substantially equal to one another and parallel to an illumination plane. Each of the plurality of sensors includes a face defined by opposing first and second elongated sides and opposing first and second non-elongated sides. The first non-elongated sides of the plurality of sensors are aligned with one another along an axis that is substantially perpendicular to the illumination plane.
Abstract:
A spectral measurement device includes an optical band-pass filter section having a spectral band of first to n-th wavelengths (n is an integer of 2 or more), a light receiving section, a correction operation section, and a signal processing section. When an m-th wavelength band (1≦m≦n) is an interest wavelength band, and a k-th wavelength band (k≠m and 1≦k≦n) other than the m-th wavelength band is a non-interest wavelength band, the optical band-pass filter section functions as a m-th band-pass filter corresponding to the m-th wavelength band and a k-th band-pass filter corresponding to the k-th wavelength band.
Abstract:
Computer program products comprising tangible computer-readable media having instructions that are executable by a computer to generate a customized spectral profile, which can be used to generate a corresponding filter. The instructions can comprise: generating a trial source spectrum; determining an uncorrected lamp source spectrum; calculating one or more optical indices using the trial source spectrum or the uncorrected lamp source spectrum; and optimizing one or more of the optical indices by varying the trial source spectrum to generate the customized spectral profile.
Abstract:
The invention relates to a method and a device for screen calibration for the true-to-original reproduction of surface colors, the spectral reflection distribution of which is known, wherein by setting parameters the screen can be influenced using software and an electronic controller in each partial region of the screen. The invention is characterized in that an observer adapts the reproduced color impression of the screen to the color impression of an original in each partial region of the screen, wherein the original is compared to the screen colors immediately thereafter on the screen surface and the screen parameters are varied until the color impressions of the original and of the screen appear identical to the observer on the respectively viewed partial screen, viewed from a predefined observer angle, and the settings performed are stored in a screen profile.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like.
Abstract:
Devices (1) for monitoring light (2) coming from different areas comprise first components (10) for selecting light coming from a particular area, second components (20) for filtering the selected light, third components (30) for sensing the filtered light, and fourth components (40) for in response to an output signal of the third component (30) determining spectra of the sensed light and for calculating color parameters such as color points and/or color rendering indices from the spectra. The first components (10) may comprise light angle selectors and redirectors (11), such as rotational mirrors (110) and rotational apparatuses (112), and light angle restrictors (12), such as high aspect ratio structures with absorbing walls (120) or circular holes (121). The second components (20) may comprise filter arrays (21). The third components (30) may comprise sensor arrays (31). The fourth components (40) may comprise controllers (43) for determining the spectra based on prior knowledge of light sources (6) or by using pseudo inverse matrix techniques. Memories (44) may store device information, color matching functions, reflection curves and standardized data for a color metric calculation.
Abstract:
An interference filter includes: a first substrate; a second substrate that faces one side of the first substrate and is bonded to the first substrate; a first reflection film formed on the side of the first substrate that faces the second substrate; and a second reflection film provided on the second substrate and faces the first reflection film, the first substrate including a first gap formation region in which the first reflection film is disposed and which is not contact with the second substrate, and wherein the first substrate and the second substrate are adhesively bonded to each other with the adhesive applied into the adhesive grooves with the first bonding region and the second bonding region bonded to each other.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.