Abstract:
A handheld optoacoustic probe includes an ultrasound transducer array and optical fibers with a first end formed into a fiber bundle providing an input and a second, distal end providing an output. A light bar guide retains the distal end of the optical fibers on the same plane. One or more optical windows may be associated with, and spaced from the light bar guide so as to prevent contact between a coupling agent and the distal ends of the optical fibers, thus mitigating a potential acoustic effect of the coupling agent in response to light emitting from the fibers. A silicon rubber acoustic lens doped with TiO2 may be provided, with a reflective metal surrounding the outer surface of the acoustic lens. A handheld probe shell houses the light bar guide, the ultrasound transducer array, and the acoustic lens.
Abstract:
An analytical device including an optically opaque cladding, a sequencing layer including a substrate disposed below the cladding, and a waveguide assembly for receiving optical illumination and introducing illumination into the device. The illumination may be received from a top, a side edge, and a bottom of the device. The waveguide assembly may include a nanoscale aperture disposed in the substrate and extending through the cladding. The aperture defines a reaction cell for receiving a set of reactants. In various aspects, the device includes a sensor element and the illumination pathway is through the sensor element. Waveguides and illumination devices, such as plasmonic illumination devices, are also disclosed. Methods for forming and operating the devices are also disclosed.
Abstract:
An optical apparatus for measurement of industrial chemical processes. The analyzer uses Raman scattering and performs measurement of chemical concentrations in continuous or batch processes. The analyzer operates at a standoff distance from the analyte (or analytes) and can measure concentrations through an optical port, facilitating continuous, non-destructive, and non-invasive analysis without extracting the analyte or analytes from the process. The analyzer can measure one or several solid, liquid, or gaseous analytes, or a mixture thereof.
Abstract:
An imaging system includes a platform for placement of a sample or an animal to be imaged, and at least one excitation light source for irradiating the sample or animal to stimulate an emission at a plurality of different center wavelengths. An acousto-optic tunable filter (AOTF) is provided that includes a piezoelectric transducer crystal for emitting an acoustic wave having a ground electrode disposed on one side of the piezoelectric crystal. A patterned electrode layer is disposed on a side of the piezoelectric crystal opposite the ground electrode. The patterned electrode layer includes a continuous region proximate to its center and a discontinuous region, a pattern in the discontinuous region comprising a plurality of spaced apart features electrically connected to the continuous region, and an AO interaction crystal receiving the acoustic wave attached to the ground electrode or the patterned electrode layer.
Abstract:
In the application, the change in the magnetic state of the haemoglobin caused by the malarial infection is exploited by detecting suitable properties of haemozoin which are dependent on the application of a magnetic field. FIG. 1 shows apparatus, shown generally at (10), for performing magneto-optical detection using photo-acoustic techniques. The apparatus (10) comprises a light source (12), producing a beam of optical radiation (14) which passes through a polariser (16), a variable LC retarder (0 or 180° retardance) (18), and a (chopper 20), before impinging on a sample (22) held in a sample holder (24). The sample is in direct contact with an acoustic detector (26). The apparatus (10) further comprises an electromagnet (28), and a Gauss meter (30) can be utilised to measure the applied magnetic field strength. Advantages associated with this approach are the—possibility of making in vivo measurements, and the avoidance of problems of optical scattering associated with conventional optical measurements on turbid liquids such as whole blood.
Abstract:
A system for determining the concentration of an analyte in at least one body fluid in body tissue, the system comprising an infrared light source, a body tissue interface, a detector, and a central processing unit. The body tissue interface is adapted to contact body tissue and to deliver light from the infrared light source to the contacted body tissue. The detector is adapted to receive spectral information corresponding to infrared light transmitted through the portion of body tissue being analyzed and to convert the received spectral information into an electrical signal indicative of the received spectral information. The central processing unit is adapted to compare the electrical signal to an algorithm built upon correlation with the analyte in body fluid, the algorithm adapted to convert the received spectral information into the concentration of the analyte in at least one body fluid.
Abstract:
A polarization modulation photoreflectance technique has been developed for optical characterization of semiconductor quantum confined structures. By using a tunable laser source in conjunction with polarization state modulation, a single beam modulation spectroscopy technique may be used to characterize the optical response of semiconductor materials and structures. Disclosed methods and instruments are suitable for characterization of optical signatures of quantum electronic confinement, including resolution of excitonic states at the band edge or other direct or indirect critical points in the band structure. This allows for characterization of semiconductor quantum well structures, for characterization of strain in semiconductor films, and for characterization of electric fields at semiconductor interfaces.
Abstract:
In case of irradiating a sample with laser beam, dispersing light emitted from the sample to a spectrum, and fetching and detecting from a wavelength band extraction portion light in at least one band area from the dispersed spectrum, when at least one of a plurality of optical elements arranged between the sample and the dispersive element is switched, a positional relationship between the wavelength band extraction portion and a spectrum image formation position which is displaced in a dispersion direction due to a change in angle of light entering the dispersive element.
Abstract:
Optical imaging of an object utilizes a plurality of amplitude modulated light rays propagating through the object, either sequentially or simultaneously, for detection by a single photodetector. The light rays may propagate geometrically (i.e., directly) or diffusively. Each of the rays is encoded with a different phase to provide sufficient information for decoding the light intensity detected by the photodetector. The rays may be applied simultaneously in an array, in which case different carrier frequencies as well as different phases are applied to the different rays by any of a number of modulators. Alternatively, the rays may be individually applied to the object in a sequence of phase encoded rays. In either case, the single photodetector receives sufficient information to image each of the voxels of interest in the object being imaged. Information may be obtained for different voxels selected for imaging without mechanical scanning.
Abstract:
A color discrimination data input apparatus includes a light source for generating illumination light for illuminating a target object, a spectroscope for producing a spectrum having a plurality of spectral components, a color classification filter set to have a light-transmitting characteristic to pass only a light component having a wavelength range suitable for classification from the spectral components generated by the spectroscope in order to classify the spectral components reflected by the target object into predetermined classes, a photoelectric converting circuit for converting a reflected spectral component, upon radiation of the spectral component passing through the color classification filter on the target object, into an electrical signal, classifying circuit for classifying the reflected spectral components in accordance with the electrical signal output from the photoelectric converting circuit, the color estimating circuit of estimating a color of the target object from the reflected spectral component classified into any one of the classes by the classifying circuit on the basis of a preset absolute color estimation matrix, and an output unit for outputting a classification result obtained from the classifying circuit and an object color measurement result output from the color estimating circuit.