Abstract:
An optical measuring device for measuring a measurement region, the optical device comprising a photonic chip with an interferometer defined on said chip, said interferometer comprising first and second waveguides on said photonic chip and an interference region, wherein the first and second waveguides carry signals from the interference region to the sample region and back to the interference region, the device further comprising a phase adjusting unit configured to vary a phase difference between the signals in the first and second waveguides reflected by the measurement region.
Abstract:
A semiconductor device used for fluorescent-based molecule detection and a method for manufacturing the same are provided. The semiconductor device has a fluid channel layer defining a fluid channel through which a sample stream flows. A target cell coupled with a fluorescent source is contained by the sample stream. The semiconductor device also has an excitation light source for generating excitation light that reaches the target cell coupled with the fluorescent source to generate fluorescent light. The semiconductor device also has a light filter layer for permitting the fluorescent light to pass through and to block the excitation light and a light detection layer for detecting the fluorescent light. The functional components of the device are highly integrated. Leakage of the excitation light and background noise into the light detection component can be minimized to improve the quality of detection.
Abstract:
Non-invasive monitoring of blood constituents such as glucose, ketones, or hemoglobin A1c may be accomplished using near-infrared or short-wave infrared (SWIR) light sources through absorbance, diffuse reflection, or transmission spectroscopy. As an example, hydro-carbon related substances such as glucose or ketones have distinct spectral features in the SWIR between approximately 1500 and 2500 nm. An SWIR super-continuum laser based on laser diodes and fiber optics may be used as the light source for the non-invasive monitoring. Light may be transmitted or reflected through a tooth, since an intact tooth and its enamel and dentine may be nearly transparent in the SWIR. Blood constituents or analytes within the capillaries in the dental pulp may be detected. The non-invasive monitoring device may communicate with a device such as a smart phone or tablet, which may transmit a signal related to the measurement to the cloud with cloud-based value-added services.
Abstract:
A spectral reflectometer system for measuring a substrate is provided. A light source is provided. At least one optical detector is provided. An optical cable comprises a plurality of optical fibers, wherein the plurality of optical fibers comprises a first plurality of optical fibers, which are transmission optical fibers which extend from the light source to an optical path, and a second plurality of optical fibers, which are reflection optical fibers which extend from the optical path to the at least one optical detector. A microlens array is in the optical path.
Abstract:
The invention provides a measuring device for analyzing a luminescent sample and, in particular, for measuring the concentration of at least one analyte in a luminescent sample, comprising: a housing with a sample receptacle space for accommodating a sample container; a sample container for accommodating the luminescent sample; a radiation receiver apparatus for receiving radiation emitted by the luminescent sample; and an evaluation apparatus for evaluating the radiation from the luminescent sample received by the radiation receiver apparatus. The invention moreover provides a measuring device comprising a base part and a measuring head arranged at the base part in an interchangeable manner, wherein the measuring head is embodied to analyze the luminescent sample or it is embodied as a spectrometer measuring head.
Abstract:
The invention relates to an optical device (110) and a corresponding detection apparatus (100) that may for example be used for monitoring the replication of nucleotide sequences at a surface. In a preferred embodiment, the optical device (110) comprises a waveguide substrate (130) with a wiregrid (140) on a bottom surface (132), wherein apertures (141) of the wiregrid are in at least one direction (x) smaller than a characteristic wavelength (λ) of input light (IL). Moreover, a diffractive structure (120) is disposed on the opposite surface (131) of the substrate (130) for coupling input light (IL) into the substrate (130) such that constructive interference occurs at the apertures (141). Thus evanescent waves can be generated with high efficiency in these apertures, allowing for example for a surface-specific excitation of fluorescence (FL) that can be sensed by a detector (160).
Abstract:
A gaseous fuel monitoring system can include a gaseous fuel supply enclosure, an optical line extending along the gaseous fuel supply enclosure, and a relatively highly thermally conductive material contacting both the gaseous fuel supply enclosure and the optical line. The relatively highly thermally conductive material can comprise a pyrolytic carbon material. A method of detecting leakage from a gaseous fuel supply enclosure can include securing an optical line to the gaseous fuel supply enclosure, the securing comprising contacting a pyrolytic carbon material with the optical line and the gaseous fuel supply enclosure. A gaseous fuel monitoring system can include an optical interrogator connected to the optical line, which interrogator detects changes in light transmitted by the optical line due to changes in vibrations of the enclosure.
Abstract:
A flow cytometry system having a flow channel defined through the thickness of a substrate is disclosed. Fluid flowing through the flow channel is illuminated by a first plurality of surface waveguides that are arranged around the flow channel in a first plane, while a second plurality of surface waveguides arranged around the flow channel in a second plane receive light after it has interacted with the fluid. The illumination pattern provided to the fluid is controlled by controlling the phase of the light in the first plurality of surface waveguides. As a result, the fluid is illuminated with light that is uniform and has a low coefficient of variation, improving the ability to distinguish and quantify characteristics of the fluid, such as cell count, DNA content, and the like.
Abstract:
The present invention includes an apparatus (10) and method for detecting nitrogen gas comprising: a conduit (12) for a gas sample (16); one or more hollow core photonic crystal fibers HC-PCF (20) having a proximal portion and a distal portion, wherein the proximal portion is in communication with the gas sample (16) in the conduit (12); a laser (14) positioned to strike the gas sample (16) in the conduit (12) and opposite the one or more hollow core photonic crystal fibers (20); and a Raman spectra detector (30) connected to the distal portion of the hollow core photonic crystal fibers (20), wherein a Raman spectra is generated when the laser (14) strikes the gas sample (16) that is detected by the Raman spectra detector (30).
Abstract:
Methods and apparatus for interrogating sets of optical elements having characteristic wavelengths spanning a sweep range while avoiding overlapping reflections from the different sets when performing a wavelength sweep are provided. One example method generally includes introducing a pulse of light, by an optical source, into an optical waveguide to interrogate at least first and second sets of optical elements, wherein the optical elements within each set have different characteristic wavelengths and wherein the first and second sets are separated in time such that a first time window over which light is reflected from the optical elements in the first set and reaches a receiver does not overlap with a second time window over which light is reflected from the optical elements in the second set and reaches the receiver; and processing the reflected light to determine one or more parameters corresponding to the optical elements.