Abstract:
The ion implanting apparatus according to this invention includes: an ion source for producing the ion beam 20 including desired ion species and being shaped in a sheet with a width longer than a narrow width of a substrate 82, a mass separating magnet 36 for selectively deriving the desired ion species by bending the ion beam in a direction perpendicular to a sheet face thereof, a separating slit 72 for selectively making the desired ion species pass through by cooperating with the mass separating magnet 36, and a substrate drive device 86 for reciprocatedly driving the substrate 82 in a direction substantially perpendicular to the sheet face 20s of the ion beam 20 within an irradiating area of the ion beam 20 which has passed through a separating slit 72.
Abstract:
A cathode arc source for depositing a coating on a substrate has an anode and a cathode station for a target, a first filter means comprising a filter duct having at least one bend, and first magnetic means for steering plasma through the filter duct for removal of macroparticles from the plasma. The apparatus comprises a second filter (10) for further removal of macroparticles from the plasma, made up of a baffle (11), an aperture (12) through which plasma can pass and second magnetic means (13) for steering plasma through the aperture. The aperture size may be less than 33% of the duct sectional area at that point. The source can also include an ion beam generator. Also described is a method of depositing coatings of ions using the second filter and closing the aperture in the filter when required.
Abstract:
A cathode arc source for depositing a coating on a substrate has an anode and a cathode station for a target, a first filter means comprising a filter duct having at least one bend, and first magnetic means for steering plasma through the filter duct for removal of macroparticles from the plasma. The apparatus comprises a second filter for further removal of macroparticles from the plasma, made up of a baffle, an aperture through which plasma can pass and second magnetic means for steering plasma through the aperture. The source can also include an ion beam generator. Also described is a method of depositing coatings of ions using the second filter and closing the aperture in the filter when required.
Abstract:
A charged particle beam apparatus is provided with an aperture device which includes a plurality of slit plates. Each of the slit plates includes a plurality of slits having different widths. The slit plates are superimposed in a direction of the axis of a charged particle beam so that the corresponding slits in the slit plates overlap to define an aperture which controls a beam current.
Abstract:
The present disclosure relates a multi-leaf collimator. The multi-leaf collimator may include a plurality of leaves. At least two leaves of the plurality of leaves may be movable parallel to each another. For each leaf of at least some of the plurality of leaves, at least one portion of the leaf may have thicknesses varying along a longitudinal direction of the each leaf. The each leaf may have a first end and a second end along the longitudinal direction of the each leaf.
Abstract:
An apparatus for a transmission electron microscope includes a housing configured to be attached to the transmission electron microscope; a plunger received in the housing and movable relative to the housing; a first set of pieces coupled to the plunger, the first piece being configured to move relative to the housing in response to the plunger moving relative to the housing; and a second set of pieces positioned in a fixed spatial relationship relative to each other, the second set of pieces and the first set of pieces forming a perimeter of an opening, an extent of the opening being continuously variable by moving the first set of piece relative to the second set of pieces.
Abstract:
Embodiments of the invention relate to a mass resolving aperture that may be used in an ion implantation system that selectively exclude ion species based on charge to mass ratio (and/or mass to charge ratio) that are not desired for implantation, in an ion beam assembly. Embodiments of the invention relate to a mass resolving aperture that is segmented, adjustable, and/or presents a curved surface to the oncoming ion species that will strike the aperture. Embodiments of the invention also relate to the filtering of a flow of charged particles through a closed plasma channel (CPC) superconductor, or boson energy transmission system.
Abstract:
A beam current adjuster for an ion implanter includes a variable aperture device which is disposed at an ion beam focus point or a vicinity thereof. The variable aperture device is configured to adjust an ion beam width in a direction perpendicular to an ion beam focusing direction at the focus point in order to control an implanting beam current. The variable aperture device may be disposed immediately downstream of a mass analysis slit. The beam current adjuster may be provided with a high energy ion implanter including a high energy multistage linear acceleration unit.
Abstract:
An embodiment is to provide a technique that continuously applies a certain amount of an electron beam to a sample by selecting a beam applied to the sample from an electron beam emitted from an electron source in a scanning electron microscope. A charged particle apparatus is configured, including: a mechanism that detects the distribution of electric current strength with respect to the emitting direction of an electron beam emitted from an electron source; a functionality that predicts a fluctuation of an electric current applied to a sample by predicting the distribution of the electric current based on the detected result; a functionality that determines a position at which a beam applied to the sample is acquired based on the predicted result; and a mechanism that controls a position at which a probe beam is acquired based on the determined result.
Abstract:
A scanning transmission electron microscope according to the present invention includes an electron lens system having a small spherical aberration coefficient for enabling three-dimensional observation of a 0.1 nm atomic size structure. The scanning transmission electron microscope according to the present invention also includes an aperture capable of changing an illumination angle; an illumination electron lens system capable of changing the probe size of an electron beam probe and the illumination angle; a secondary electron detector (9); a transmission electron detector (13); a forward scattered electron beam detector (12); a focusing unit (16); an image processor for identifying image contrast; an image processor for computing image sharpness; a processor for three-dimensional reconstruction of an image; and a mixer (18) for mixing a secondary electron signal and a specimen forward scattered electron signal.