Abstract:
The present invention provides a packaging unit for liquid sample loading devices applied in an electron microscope. The liquid sample loading devices may be easily, rapidly, precisely and stably aligned and packaged by an engagement of an upper jig and a bottom jig as well as a first fixing pillar supported in a slide track of the packaging unit. Accordingly, efficiency and a yield of packaging the liquid sample loading devices may be improved. In addition, the packaging unit for the liquid sample loading devices of the present invention may directly package a liquid sample, and thus the liquid sample may maintain its original state.
Abstract:
The invention provides methods and devices for preparing frozen vitrified samples for transmission electron microscopy. By reducing the volume of sample from microliter scale to picoliter scale, the requirement for blotting of excess fluid is minimized or eliminated.
Abstract:
Disclosed herein is a micro stage using a piezoelectric element that can be reliably operated even in a vacuum environment. In a particle column requiring a high precision, for example, a microelectronic column, the micro stage can be used as a stage with micro or nano degree precision for alignment of parts of the column, or for moving a sample, and so on.
Abstract:
An apparatus and a method for measuring and monitoring the properties of a fluid, for example, pressure, temperature, and chemical properties, within a sample holder for an electron microscope. The apparatus includes at least one fiber optic sensor used for measuring temperature and/or pressure and/or pH positioned in proximity of the sample.
Abstract:
To improve the workability of the task of adjusting the position of a limit field diaphragm. An electron microscope provided with an image-capturing means for capturing an image of an observation visual field prior to insertion of a limit field diaphragm as a map image, a recording means for recording the map image, an extraction means for capturing an image of the observation visual field after insertion of the limit field diaphragm and extracting the outline of the diaphragm, a drawing means for drawing the outline on the map image, and a display means for displaying the image drawn by the drawing means.
Abstract:
There is proposed a column supporting structure that includes a viscoelastic sheet, a supporting plate which holds the viscoelastic sheet, and a fixation portion which connects the supporting plate to each lens barrel. The viscoelastic sheet is disposed to extend in a plane perpendicular to one lens barrel or the other lens barrel.
Abstract:
A high voltage feedthrough assembly (100) for providing an electric potential in a vacuum environment comprises a flange connector (10) being adapted for a connection with a vacuum vessel (201), wherein the flange connector (10) has an inner side (11) facing to the vacuum vessel (201) and an outer side (12) facing to an environment of the vacuum vessel 201, a vacuumtight insulator tube (20) having a longitudinal extension with a first end (21) facing to the flange connector (10) and a second end (22) being adapted for projecting into the vacuum vessel (201), and an electrode device (30) coupled to the second end (22) of the insulator tube (20), wherein the electrode device (30) has a front electrode (31), including a photocathode or a field emitter tip and facing to the vacuum vessel (201) and a cable adapter (32) for receiving a high-voltage cable (214), wherein a flexible tube connector (40) is provided for a vacuum-tight coupling of the insulator tube (20) with the flange connector (10), and a manipulator device (50) is connected with the insulator tube (20) for adjusting a geometrical arrangement of the insulator tube (20) relative to the flange connector (10). Furthermore, an electron diffraction or imaging apparatus (transmission electron microscope, TEM) 200 for static and/or time-resolved diffraction, including (nano-) crystallography, and real space imaging for structural investigations including the high voltage feedthrough assembly (100) and a method of manipulating an electrode device (30) in a vacuum environment are described.
Abstract:
A method for forming a dimension measurement apparatus calibration standard over a substrate is provided. The method includes forming strip structures over the substrate. The method includes depositing a calibration material layer over the substrate and the strip structures. The calibration material layer and the strip structures are made of different materials. The method includes removing the calibration material layer over top surfaces of the strip structures to expose the strip structures. The method includes removing the strip structures. The calibration material layer remaining over sidewalls of the strip structures forms linear calibration structures.
Abstract:
An electron microscope specimen sample holder including a thin sheet base member with a first surface and an opposing second surface, the first surface defining a seat and support surface for a specimen holding film held by the sample holder, the base member including an aperture through the second surface exposing the holding film held by the sample holder, and including a grip engagement zone defined at least on part of the first surface arranged to engage a gripping device, and wherein at least one of the first or second surface has machine readable structures formed thereon arranged in patterns embodying data that defines at least one predetermined characteristic of the sample holder.
Abstract:
The present application discloses methods, systems and devices for using charged particle beam tools to pattern and inspect a substrate. The inventors have discovered that it is highly advantageous to use patterns generated using the Hadamard transform as alignment and registration marks (Hadamard targets) for multiple-column charged particle beam lithography and inspection tools. Further, superior substrate alignment and layer-to-layer pattern registration accuracy can be achieved using Hadamard targets patterned in edge-proximal portions of the substrate that are typically stripped bare of resist prior to lithography, in addition to Hadamard targets patterned in inner substrate portions. High-order Hadamard targets can also be patterned and imaged to obtain superior column performance metrics for applications such as super-rapid beam calibration DOE, column matching, and column performance tracking. Superior alignment and registration, and column parameter optimization, allow significant yield gains.