Abstract:
An electrical structure and method for forming electrical interconnects. The method includes positioning a sacrificial carrier substrate such that a first surface of a non-solder metallic core structure within the sacrificial carrier substrate is in contact with a first electrically conductive pad. The first surface is thermo-compression bonded to the first electrically conductive pad. The sacrificial carrier substrate is removed from the non-solder metallic core structure. A solder structure is formed on a second electrically conductive pad. The first substrate comprising the non-solder metallic core structure is positioned such that a second surface of the non-solder metallic core structure is in contact with the solder structure. The solder structure is heated to a temperature sufficient to cause the solder structure to melt and form an electrical and mechanical connection between the second surface of the non-solder metallic core structure and the second electrically conductive pad.
Abstract:
A wiring board includes: an uppermost wiring layer formed on a prescribed number of underlying wiring layers, a portion of the uppermost wiring layer being exposed and used as a pad for connection with a component to be mounted; and an insulation resin layer covering the uppermost wiring layer, wherein the thickness of the portion of the uppermost wiring layer is larger than that of other portions thereof.
Abstract:
A space transformer for a semiconductor test probe card and method of fabrication. The method may include depositing a first metal layer as a ground plane on a space transformer substrate having a plurality of first contact test pads defining a first pitch spacing, depositing a first dielectric layer on the ground plane, forming a plurality of second test contacts defining a second pitch spacing different than the first pitch spacing, and forming a plurality of redistribution leads on the first dielectric layer to electrically couple the first contact test pads to the second contact test pads. In some embodiments, the redistribution leads may be built directly on the space transformer substrate. The method may be used in one embodiment to remanufacture an existing space transformer to produce fine pitch test pads having a pitch spacing smaller than the original test pads. In some embodiments, the test pads may be C4 test pads.
Abstract:
An electrical structure and method for forming electrical interconnects. The method includes positioning a sacrificial carrier substrate such that a first surface of a non-solder metallic core structure within the sacrificial carrier substrate is in contact with a first electrically conductive pad. The first surface is thermo-compression bonded to the first electrically conductive pad. The sacrificial carrier substrate is removed from the non-solder metallic core structure. A solder structure is formed on a second electrically conductive pad. The first substrate comprising the non-solder metallic core structure is positioned such that a second surface of the non-solder metallic core structure is in contact with the solder structure. The solder structure is heated to a temperature sufficient to cause the solder structure to melt and form an electrical and mechanical connection between the second surface of the non-solder metallic core structure and the second electrically conductive pad.
Abstract:
A female circuit board for use with a male circuit board has electrically conductive projections. The female circuit board includes a flexible insulating film. The flexible insulating film includes insertion portions into which the conductive projections of the male circuit board are allowed to be inserted. Each of the insertion portions includes a plurality of slits communicating with each other at the center of each of the insertion portions. The flexible insulating film further includes electrically conduction portions for making contact with the conductive projections to come into conduction with the male circuit board. The conduction portions are disposed around the insertion portions on the surface of the female circuit board facing the male circuit board when the female circuit board is in contact with the male circuit board. The conduction portions conform in shape to the insertion portions.
Abstract:
A multilayer ceramic circuit board includes ceramic wiring layers which are stacked together, one or two or more lifting layers which have a planar shape and which are disposed as an inner layer inside the stacked ceramic wiring layers or as a lower layer lower than a bottom ceramic wiring layer, and a protruding portion formed on a surface of a top ceramic wiring layer due to the disposition of the one or two or more lifting layers. The protruding portion smoothly protrudes and has a large area and high flatness. The multilayer ceramic circuit board is formed by disposing lifting layers as an inner layer of a plurality green sheets or as a lower layer lower than a bottom green sheet, and firing under pressure the resulting laminate in a state constrained by an elastic constraining sheet and a rigid constraining sheet.
Abstract:
A coreless substrate having a plurality of function pads, etched from a metal sheet and having a protruded shape; an insulating layer, the insulating layer being formed on one side of the function pads, a circuit corresponding to a pattern being formed on the insulating layer, a via hole being formed on the insulating layer to electrically connect the function pads and the circuit; and a solder resist, being formed on the insulating layer to protect the surface of the insulating layer. The coreless substrate has a signal delivery characteristic that is improved by eliminating the inner via hole.
Abstract:
The electrical connection structure includes: a first substrate which has a first electrode part; a second substrate which has a second electrode part opposing the first electrode part, and a wiring pattern connected to the second electrode part; an insulating cavity substrate which is disposed between the first substrate and the second substrate and has a through hole in a position corresponding to the first electrode part, the through hole being deeper that a sum of a height of the first electrode part and a height of the second electrode part and having an opening surface area not smaller that an area of the first electrode part; and conductive material which is filled in the through hole.
Abstract:
A method of manufacturing a printed circuit board having solder balls. The method may include: stacking a second carrier, in which at least one hole is formed, over one side of a first carrier; forming at least one solder bump by filling the hole with a conductive material; forming a circuit pattern layer, which is electrically connected with the solder bump, on the second carrier; and exposing the solder bump by removing the first carrier and the second carrier. Using this method, uniform hemispherical solder balls with fine pitch can be formed as a part of the manufacturing process, without having to attach the solder balls separately. Carriers may be used to serve as supports during the manufacturing process, whereby deformations can be prevented in the board.
Abstract:
A flexible column interconnect for a microelectronic substrate includes a plurality of conductive columns extending from a bond pad or other conductive terminal in substantially mutually parallel arrangement, providing redundant current paths between the bond pad and a common cap in the form of a contact pad to which they are all joined. The flexibility of the interconnect may be varied by controlling the column dimensions, height, aspect ratio, number of columns, column material and by applying a supporting layer of dielectric material to a controlled depth about the base of the columns. A large number of interconnects may be formed on a wafer, partial wafer, single die, interposer, circuit board, or other substrate.