Abstract:
A wiring board includes: an uppermost wiring layer formed on a prescribed number of underlying wiring layers, a portion of the uppermost wiring layer being exposed and used as a pad for connection with a component to be mounted; and an insulation resin layer covering the uppermost wiring layer, wherein the thickness of the portion of the uppermost wiring layer is larger than that of other portions thereof.
Abstract:
A coil electric conductor has an insulating substrate, a first conductive layer, and a second conductive layer. The first conductive layer is formed at a depression provided on a face of the insulating substrate. The second conductive layer is formed on the first conductive layer with the first conductive layer interposed between the second conductive layer and the insulating substrate. This construction realizes a coil electric conductor having a highly precisely uniformized cross-sectional shape.
Abstract:
A method for making a circuit plate includes: forming first holes in an insulating layer; forming a conductive layer on the insulating layer such that a portion of the conductive layer fills the first holes; grinding the conductive layer such that the portion of the conductive layer remains in the first holes to form a pattern of conductive traces; forming a dielectric protective layer that covers the insulating layer and the conductive traces; forming a pattern of second holes in the protective layer such that a portion of each of the conductive traces is accessible through a respective one of the second holes; and forming conductive bumps that are respectively connected to the conductive traces.
Abstract:
The present invention provides a flip-chip package substrate and a method for fabricating a flip-chip package substrate comprising a circuit build-up structure, which comprises at least a dielectric layer and at least a circuit layer, wherein each dielectric layer comprises a first surface and a second surface, plural vias are formed in the first surface, the circuit layer is formed on the first surface and in the vias to electrically connect to another circuit layer disposed under the dielectric layer; a metal layer embedded in the exposed second surface of the circuit build-up structure without protruding the exposed second surface and connected to the circuit layer; and two solder masks disposed on the exposed first surface and the exposed second surface of the circuit build-up structure, wherein the solder masks have plural openings to separately expose part of the circuit layer and the metal layer functioning as conductive pads.
Abstract:
Disclosed herein is a Light Emitting Diode (LED) backlight unit without a Printed Circuit board (PCB). The LED backlight unit includes a chassis, insulating resin layer, and one or more light source modules. The insulating resin layer is formed on the chassis. The circuit patterns are formed on the insulating resin layer. The light source modules are mounted on the insulating resin layer and are electrically connected to the circuit patterns. The insulating resin layer has a thickness of 200 μm or less, and is formed by laminating solid film insulating resin on the chassis or by applying liquid insulating resin to the chassis using a molding method employing spin coating or blade coating. Furthermore, the circuit patterns are formed by filling the engraved circuit patterns of the insulating resin layer with metal material.
Abstract:
A circuit substrate for attachment to an integrated circuit chip comprises an electrical trace, a mounting pad and a dielectric layer. The mounting pad has a first surface, one or more sidewalls and a second surface. The first surface is attached to the electrical trace. The dielectric layer substantially covers the one or more sidewalls of the mounting pad and has an uppermost surface that is substantially coplanar with the second surface of the mounting pad.
Abstract:
A process for fabricating a circuit board with an embedded passive component is provided. First, an electrode-patterned layer having electrodes is formed on a surface of a conductive layer. Then, a passive component material is filled in the intervals between the electrodes. Then, the conductive layer and the electrode-patterned layer are laminated to a dielectric layer, wherein the electrode-patterned layer is embedded in the dielectric layer. Next, the conductive layer is patterned to form a circuit layer.
Abstract:
The present invention provides a conductive material having superior bending property and superior bending resistant property and a method for manufacturing the same. This object is achieved by a conductive material comprising a substrate and a conductive portion formed within the substrate, wherein a change ratio in the electric resistance values before and after a bending resistant property test, in which the conductive portion is bent by 180 degrees and a load of 1 kg/cm2 is imposed on the bent portion for one hour, is set within a range of ±10%.
Abstract translation:本发明提供具有优异的弯曲性和优异的抗弯曲性的导电材料及其制造方法。 该目的通过包括基板和形成在基板内的导电部分的导电材料来实现,其中导电部分弯曲180度的抗弯曲性试验之前和之后的电阻值的变化率和 在弯曲部分施加1kg / cm 2的负荷1小时,设定在±10%的范围内。
Abstract:
A multilayer substrate according to the present invention includes a plurality of laminated insulating layers and conductive patterns formed between the respective insulating layers. The conductive patterns include a first conductive pattern having a predetermined thickness and a second conductive pattern thicker than the first conductive pattern. The first and second conductive patterns are located in the same layer. The first conductive pattern is formed by pattern-etching a conductive layer having a uniform thickness by the subtractive method. The second conductive pattern is formed by forming a pattern-forming groove and then filling the inside of the pattern-forming groove with a conductive material simultaneously with forming a via hole. The first conductive pattern is suitable for an LC pattern for a high-frequency circuit requiring small variations in the width and the thickness of the pattern as well as accuracy in the thickness relative to an insulating pattern, and for a normal conductive pattern requiring impedance matching. The second conductive pattern is suitable for an L pattern for a choke coil.
Abstract:
First circuit board 10 including first resin base material 12 which is softened by heating and has a fusing property, and a plurality of first conductor patterns 14 formed on a surface of first resin base material 12, and second circuit board 20 on which a plurality of second conductor patterns 24 are formed with the same pitch as that of first conductor patterns 14 are provided. In the configuration, first conductor patterns 14 and second conductor patterns 24 are brought into mechanical contact with each other to provide electrical conduction; first resin base material 12 covers first conductor patterns 14 and second conductor patterns 24 and is bonded to second resin base material 22 of second circuit board 20, thereby connecting first circuit board 10 and second circuit board 20 to each other.