Abstract:
A hard disk drive flexible printed circuit (FPC) includes a plurality of fingers extending from a main portion, with each finger having a first wiring layer including a first electrically conductive trace layout, a second wiring layer including a second electrically conductive trace layout, and a base film interposed between the first and second wiring layers, where the first conductive trace layout includes at least one thermally conductive protective island overlaying a respective portion of the second trace layout to provide a protective thermal barrier to the base film. Hence, maximum temperatures across various layers of the FPC laminate can be reduced, damage to the FPC prevented, and manufacturing yields improved.
Abstract:
Provided are interconnects for interconnecting a set of battery cells, assemblies comprising these interconnects, methods of forming such interconnects, and methods of forming such assemblies. An interconnect includes a conductor comprising two portions electrically isolated from each other. At least one portion may include two contacts for connecting to battery cells and a fuse forming an electrical connection between these two contacts. The interconnect may also include an insulator adhered to the conductor and mechanically supporting the two portions of the conductor. The insulator may include an opening such that the fuse overlaps with this opening, and the opening does not interfere with the operation of the fuse. In some embodiments, the fuse may not directly interface with any other structures. Furthermore, the interconnect may include a temporary substrate adhered to the insulator such that the insulator is disposed between the temporary substrate and the conductor.
Abstract:
A hard disk drive flexible printed circuit (FPC) includes a plurality of fingers extending from a main portion, with each finger having a first wiring layer including a first electrically conductive trace layout, a second wiring layer including a second electrically conductive trace layout, and a base film interposed between the first and second wiring layers, where the first conductive trace layout includes at least one thermally conductive protective island overlaying a respective portion of the second trace layout to provide a protective thermal barrier to the base film. Hence, maximum temperatures across various layers of the FPC laminate can be reduced, damage to the FPC prevented, and manufacturing yields improved.
Abstract:
A method of forming a component module is disclosed. A base is provided, the base being electrically conductive. An insulative layer is also provided on the base, with a first area being substantially free of the insulative layer. First and second traces are provided on the insulative layer adjacent the first area, with these traces extending therefrom. A die is positioned on the first area and electrically connected to the first and second traces. Finally, a protective layer is provided over the die.
Abstract:
The present invention relates to a selectively conductive toy building element, comprising: a body adapted for releasable engagement to at least one other toy building element body or to a corresponding baseplate, the body including at least one conductive portion having at least one contact area adapted to generate pressure on a conductive portion or contact area of an adjacent toy building element body, in such a way that ensures electrical conduction between said toy building elements in a desired location and direction.
Abstract:
A printed circuit board arrangement and a method for mounting a product to a main printed circuit board (100) at a substantially perpendicular angle, the printed circuit board arrangement comprises a main printed circuit board (100) comprising an elongated slot (102), and a product (128) comprising a connector portion (130) configured to be inserted into the elongated slot (102). The connector portion (130) is such that the product (128) may be attached at a substantially perpendicular angle to the main printed circuit board (100). The elongated slot (102) comprises a protrusion (104), and the connector portion (130) comprises a spring portion (132) configured to engage with the protrusion (104) when the connector portion (130) is inserted into the elongated slot (102). This results in a force pressing the connector portion (130) of the product (128) to at least one side wall of the elongated slot (102).
Abstract:
The present invention provides a substrate for suspension that includes a first structural part including a metal supporting substrate, an insulating layer, a wiring layer, and a cover layer, and a second structural part formed so as to extend continuously from the first structural part and has no metal supporting substrate. A position of an edge of an upper surface of the insulating layer coincides with a position of an edge of the lower surface of the cover layer or the position of the edge of the upper surface of the insulating layer is positioned on a side closer to the wiring layer than to the position of the edge of the lower surface of the cover layer at a boundary region between the first structural part and the second structural part.
Abstract:
Provided are interconnect circuits for interconnecting arrays of battery cells and methods of forming these interconnect circuits as well as connecting these circuits to the battery cells. An interconnect circuit may include a conductive layer and one or more insulating layers. The conductive layer may be patterned with openings defining contact pads, such that each pad is used for connecting to a different battery cell terminal. In some embodiments, each contact pad is attached to the rest of the conductive layer by a fusible link formed from the same conductive layer as the contact pad. The fusible link controls the current flow to and from this contact pad. The insulating layer is laminated to the conductive layer and provides support to the contacts pads. The insulating layer may also be patterned with openings, which allow forming electrical connections between the contact pads and cell terminals through the insulating layer.
Abstract:
A lightweight audio player for vehicular application is virtually “fastenerless” and includes a fold-up case formed of polymer based material molded to provide details to accept audio devices, as well as the circuit boards required for electrical control and display. The case is of composite structure, including an insert molded electrically conductive wire mesh screen. The wire mesh provides shielding and grounding of the circuit boards via exposed wire mesh pads and adjacent ground clips. Side wall closure members define self-engaging attachment features for affixing to the case, providing electrical self-grounding with the wire screen and thermal grounding with internal power devices. The major components and subassemblies are self-fixturing during the final assembly process, eliminating the need for dedicated tools, fixtures and assembly equipment.
Abstract:
A computer program product for fabricating an optical assembly having stored computer readable program code including a first program to place a flexible portion of a substrate including a waveguide, the waveguide exposed at one end edge of the substrate upon a horizontally movable stage of a flip-chip bonder, a second program to vertically move a clamp through the stage opening to place the waveguide exposed end in a vertical position, a third program to vertically downwardly move a bond head containing an optical component upon the waveguide exposed substrate edge to position the optical component with the exposed waveguide, a fourth program to fixably mount the optical component to the substrate edge, and a fifth program to release the optical component from the bond head while moving the clamp vertically downward through the stage opening unbending the flexible portion of the substrate with the optical component mounted thereon.