Abstract:
Provided is a wiring thin plate capable of suppressing deterioration of an electric characteristic and variation in thickness of an aerial wiring portion while advancing reduction of rigidity of the aerial wiring portion. The wiring thin plate includes an aerial wiring portion including wiring traces and passing over an airspace, aerial base layers provided at the respective wiring traces in the aerial wiring portion and being apart from each other, and an aerial cover layer provided in the aerial wiring portion and spanning from the wiring traces of the aerial wiring portion through the aerial base layers to interspaces between adjacent aerial base layers of said aerial base layers.
Abstract:
Encapsulated conformal electronic devices, encapsulated conformal integrated circuit (IC) systems, and methods of making and using encapsulated conformal electronic devices are presented herein. A conformal IC device is disclosed which includes a flexible substrate, electronic circuitry attached to the flexible substrate, and a flexible multi-part encapsulation housing encasing therein the electronic circuitry and flexible substrate. The multi-part housing includes first and second encapsulation housing components. The first encapsulation housing component has recessed regions for seating therein the electronic circuitry, while the second encapsulation housing component has recessed regions for seating therein the flexible substrate. First encapsulation housing component optionally includes a recessed region for seating therein the flexible substrate. Either housing component may include one or more projections that pass through holes in the substrate to engage complementary depressions in the other housing component to thereby align and interlock the encapsulation housing components with the flexible substrate and electronic circuitry.
Abstract:
A multilayer structure for an electronic device having a flexible substrate film (202) for accommodating electronics (204); at least one electronic component (204) provided on said substrate film (202); and a number of conductive traces (206) provided on said substrate film (202) for electrically powering and/or connecting electronics including said at least one electronic component (204), wherein at least one preferably thermoformed cover (210) is attached to said substrate film (202) on top of said at least one electronic component (204), the at least one thermoformed cover (210) and the substrate film (202) accommodating the electronics (204) being overmolded with thermoplastic material (208). The invention also relates to a method for manufacturing a multilayer structure for an electronic device
Abstract:
An embodiment of a method of attaching a semiconductor die to a substrate includes placing a bottom surface of the die over a top surface of the substrate with an intervening die attach material. The method further includes contacting a top surface of the semiconductor die and the top surface of the substrate with a conformal structure that includes a non-solid, pressure transmissive material, and applying a pressure to the conformal structure. The pressure is transmitted by the non-solid, pressure transmissive material to the top surface of the semiconductor die. The method further includes, while applying the pressure, exposing the assembly to a temperature that is sufficient to cause the die attach material to sinter. Before placing the die over the substrate, conductive mechanical lock features may be formed on the top surface of the substrate, and/or on the bottom surface of the semiconductor die.
Abstract:
An embodiment of a method of attaching a semiconductor die to a substrate includes placing a bottom surface of the die over a top surface of the substrate with an intervening die attach material. The method further includes contacting a top surface of the semiconductor die and the top surface of the substrate with a conformal structure that includes a non-solid, pressure transmissive material, and applying a pressure to the conformal structure. The pressure is transmitted by the non-solid, pressure transmissive material to the top surface of the semiconductor die. The method further includes, while applying the pressure, exposing the assembly to a temperature that is sufficient to cause the die attach material to sinter. Before placing the die over the substrate, conductive mechanical lock features may be formed on the top surface of the substrate, and/or on the bottom surface of the semiconductor die.
Abstract:
Device, system, and method of three-dimensional printing. A device includes: a first 3D-printing head to selectively discharge conductive 3D-printing material; a second 3D-printing head to selectively discharge insulating 3D-printing material; and a processor to control operations of the first and second 3D-printing heads based on a computer-aided design (CAD) scheme describing a printed circuit board (PCB) intended for 3D-printing. A 3D-printer device utilizes 3D-printing methods, in order to 3D-print: (a) a functional multi-layer PCB; or (b) a functional stand-alone electric component; or (c) a functional PCB having an embedded or integrated electric component, both of them 3D-printed in a unified 3D-printing process.
Abstract:
A conformal coating composition for protecting a metal surface from sulfur related corrosion includes a polymer and metal nanoparticles blended with the polymer. In accordance with some embodiments of the present invention, an apparatus includes an electronic component mounted on a substrate, metal conductors electronically connecting the electronic component, and a polymer conformal coating containing metal nanoparticles overlying the metal conductors. Accordingly, the metal nanoparticle-containing conformal coating is able to protect the metal conductors from corrosion caused by sulfur components (e.g., elemental sulfur, hydrogen sulfide, and/or sulfur oxides) in the air. That is, the metal nanoparticles in the conformal coating react with any corrosion inducing sulfur component in the air and prevent the sulfur component from reacting with the underlying metal conductors.
Abstract:
An electrical or electro-optical assembly comprising a substrate comprising an insulating material, at least one conductive track present on at least one surface of the substrate, at least one electrical or electro-optical component connected to at least one of the at least one conductive track, and a continuous coating comprising one or more plasma-polymerized polymers completely covering the at least one surface of the substrate, the at least one conductive track and the at least one electrical or electro-optical component.
Abstract:
A conformal electro-magnetic (EM) detector and a method of applying such a detector are provided herein as well as variations thereof Variations include, but are not limited to, single-element, area detectors; an array of multiple active elements.
Abstract:
A method and an apparatus for mitigating electrical failures caused by intrusive structures. Such structures can be tin whiskers forming on electrical circuits. In an illustrative embodiment, nano-capsules are filled with some type of insulative and adhesive fluid that is adapted to bind to and coat an intrusive structure, e.g., a whisker, making the whisker electrically inactive and thereby reducing the electrical faults that can be caused by the whisker. In another illustrative embodiment, randomly oriented nano-fibers having an elastic modulus higher than tin or any other whisker material is used to arrest a growth or movement of a whisker and further reduce a likelihood that a whisker can cause an electrical fault.